1,060 research outputs found

    Trends Biochem Sci

    Get PDF
    The metabolic network has a modular architecture, is robust to perturbations, and responds to biological stimuli and environmental conditions. Through monitoring by metabolite responsive macromolecules, metabolic pathways interact with the transcriptome and proteome. Whereas pathway interconnecting cofactors and substrates report on the overall state of the network, specialised intermediates measure the activity of individual functional units. Transitions in the network affect many of these regulatory metabolites, facilitating the parallel regulation of the timing and control of diverse biological processes. The metabolic network controls its own balance, chromatin structure and the biosynthesis of molecular cofactors; moreover, metabolic shifts are crucial in the response to oxidative stress and play a regulatory role in cancer

    A Method to Polarize Stored Antiprotons to a High Degree

    Get PDF
    Polarized antiprotons can be produced in a storage ring by spin--dependent interaction in a purely electron--polarized hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies T≈40−170T\approx 40-170 MeV using a dedicated large acceptance ring, the antiproton beam polarization would reach P=0.2−0.4P=0.2-0.4. Polarized antiprotons would open new and unique research opportunities for spin--physics experiments in pˉp\bar{p}p interactions

    Creation and application of immortalized bait libraries for targeted enrichment and next-generation sequencing

    No full text
    Since the introduction of next-generation sequencing, several techniques have been developed to selectively enrich and sequence specific parts of the genome at high coverage. These techniques include enzymatic methods employing molecular inversion probes, PCR based approaches, hybrid capture, and in-solution capture. In-solution capture employs RNA probes transcribed from a pool of DNA template oligos designed to match regions of interest to specifically bind and enrich genomic DNA fragments. This method is highly efficient, especially if genomic target regions are large in size or quantity. Diverse in-solution capture kits are available, but are costly when large sample numbers need to be analyzed. Here we present a cost-effective strategy for the design of custom DNA libraries, their transcription into RNA libraries, and application for in-solution capture. We show the efficacy by comparing the method to a commercial kit and further demonstrate that emulsion PCR can be used for bias free amplification and virtual immortalization of DNA template libraries

    A centrosome-independent role for {gamma}-TuRC proteins in the spindle assembly checkpoint

    Get PDF
    The spindle assembly checkpoint guards the fidelity of chromosome segregation. It requires the close cooperation of cell cycle regulatory proteins and cytoskeletal elements to sense spindle integrity. The role of the centrosome, the organizing center of the microtubule cytoskeleton, in the spindle checkpoint is unclear. We found that the molecular requirements for a functional spindle checkpoint included components of the large {gamma}-tubulin ring complex ({gamma}-TuRC). However, their localization at the centrosome and centrosome integrity were not essential for this function. Thus, the spindle checkpoint can be activated at the level of microtubule nucleation

    J Mol Biol

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused by a trinucleotide expansion in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2 (ATX2), whose cellular function is unknown. However, ATX2 interacts with A2BP1, a protein containing an RNA-recognition motif, and the existence of an interaction motif for the C-terminal domain of the poly(A)-binding protein (PABC) as well as an Lsm (Like Sm) domain in ATX2 suggest that ATX2 like its yeast homolog Pbp1 might be involved in RNA metabolism. Here, we show that, similar to Pbp1, ATX2 suppresses the petite (pet−) phenotype of Δmrs2 yeast strains lacking mitochondrial group II introns. This finding points to a close functional relationship between the two homologs. To gain insight into potential functions of ATX2, we also generated a comprehensive protein interaction network for Pbp1 from publicly available databases, which implicates Pbp1 in diverse RNA-processing pathways. The functional relationship of ATX2 and Pbp1 is further corroborated by the experimental confirmation of the predicted interaction of ATX2 with the cytoplasmic poly(A)-binding protein 1 (PABP) using yeast-2-hybrid analysis as well as co-immunoprecipitation experiments. Immunofluorescence studies revealed that ATX2 and PABP co-localize in mammalian cells, remarkably, even under conditions in which PABP accumulates in distinct cytoplasmic foci representing sites of mRNA triage

    Cancer Precision Medicine: Why More Is More and DNA Is Not Enough

    Get PDF
    Every tumour is different. They arise in patients with different genomes, from cells with different epigenetic modifications, and by random processes affecting the genome and/or epigenome of a somatic cell, allowing it to escape the usual controls on its growth. Tumours and patients therefore often respond very differently to the drugs they receive. Cancer precision medicine aims to characterise the tumour (and often also the patient) to be able to predict, with high accuracy, its response to different treatments, with options ranging from the selective characterisation of a few genomic variants considered particularly important to predict the response of the tumour to specific drugs, to deep genome analysis of both tumour and patient, combined with deep transcriptome analysis of the tumour. Here, we compare the expected results of carrying out such analyses at different levels, from different size panels to a comprehensive analysis incorporating both patient and tumour at the DNA and RNA levels. In doing so, we illustrate the additional power gained by this unusually deep analysis strategy, a potential basis for a future precision medicine first strategy in cancer drug therapy. However, this is only a step along the way of increasingly detailed molecular characterisation, which in our view will, in the future, introduce additional molecular characterisation techniques, including systematic analysis of proteins and protein modification states and different types of metabolites in the tumour, systematic analysis of circulating tumour cells and nucleic acids, the use of spatially resolved analysis techniques to address the problem of tumour heterogeneity as well as the deep analyses of the immune system of the patient to, e.g., predict the response of the patient to different types of immunotherapy. Such analyses will generate data sets of even greater complexity, requiring mechanistic modelling approaches to capture enough of the complex situation in the real patient to be able to accurately predict his/her responses to all available therapies

    Electron self-injection threshold for the tandem-pulse laser wakefield accelerator

    Full text link
    A controllable injection scheme is key to producing high quality laser-driven electron beams and X-rays. Self-injection is the most straightforward scheme leading to high current and peak energies, but is susceptible to variations in laser parameters and target characteristics. In this work improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.Comment: 11 pages, 9 figures, submitted for publication (2019

    A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods

    Get PDF
    Preserving the original RNA orientation information in RNA-Sequencing (RNA-Seq) experiment is essential to the analysis and understanding of the complexity of mammalian transcriptomes. We describe herein a simple, robust, and time-effective protocol for generating strand-specific RNA-seq libraries suited for the Illumina sequencing platform. We modified the Illumina TruSeq RNA sample preparation by implementing the strand specificity feature using the dUTP method. This protocol uses low amounts of starting material and allows a fast processing within two days. It can be easily implemented and requires only few additional reagents to the original Illumina kit

    LNA-modified oligodeoxynucleotide hybridization with DNA microarrays printed on nanoporous membrane slides

    No full text
    We report a robust method for the detection of hybridization events using a microarray-based assay on a nanoporous membrane platform. The technique is characterized by a hybridization time of only 1 hour and uses Cy5- labeled, 7-mer oligodeoxynucleotide probes modified with locked nucleic acid (LNA) nucleotides. We show that the volume of the DNA spotted onto a nanomembrane can be reduced to ∼4 nL with detectable signal intensity. Moreover, the amount of the DNA target could be reduced to 4 fmol. The described approach could dramatically increase the throughput of techniques based on sequencing by hybridization, such as oligofingerprinting, by decreasing the total number of probes that are needed for analysis of large clone sets and reduction of the sample/reagent consumption. The method is particularly advantageous when numerous hybridization-based assays must be performed for characterization of sample sets of 100,000 or more
    • …
    corecore