261 research outputs found
Succession of the sea-surface microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind conditions
The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the coastal zone of the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, (3)H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW
Quenched Chiral Perturbation Theory for Vector Mesons
We develop quenched chiral perturbation theory for vector mesons made of
light quarks, in the limit where the vector meson masses are much larger than
the pion mass. We use this theory to extract the leading nonanalytic dependence
of the vector meson masses on the masses of the light quarks. By comparing with
analogous quantities computed in ordinary chiral perturbation theory, we
estimate the size of quenching effects, observing that in general they can be
quite large. This estimate is relevant to lattice simulations, where the
mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st
Structure functions near the chiral limit
We compute hadron masses and the lowest moments of unpolarized and polarized
nucleon structure functions down to pion masses of 300 MeV, in an effort to
make unambiguous predictions at the physical light quark mass.Comment: 3 pages, 3 figures, Lattice2002(matrixel
Hadron masses and decay constants in quenched QCD
We present results for the mass spectrum and decay constants using
non-perturbatively O(a) improved Wilson fermions. Three values of and
30 different quark masses are used to obtain the chiral and continuum limits.
Special emphasis will be given to the question of taking the chiral limit and
the existence of non-analytic behavior predicted by quenched chiral
perturbation theory.Comment: LATTICE99(spectrum), 3 pages, 6 figure
Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks
Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson
mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm
systematic})) in our quenched lattice QCD numerical calculation with staggered
quarks. The systematic error is mostly from finite-volume effect and the
finite-spacing effect is negligible. The flavor symmetry breaking in the pion
and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm)
0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare
quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in
hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex
When Families, Organizational Culture, and Policy Collide: A Mixed Method Study of Alternative Response
Objective Alternative response (AR) is a family-centered, preventative approach for child protection systems. This study first examined what family and case factors predicted re-investigation and then explored which organizational factors influence caseworker and agency implementation of AR. Method Using administrative data from child protection reports, AR families (N = 9,959) and traditional response (TR) families (N = 13,974) were followed for 18 months to determine re-investigation rates using multilevel modeling where families were nested in county of residence. Four focus groups with 14 participants were conducted to discuss the quantitative findings, organizational culture, and implementation of AR. Results AR families had lower odds of re-investigation; males and younger children also had lower odds. Families with multiple children, prior investigations, receipt of Medicaid, and medium/high risk had higher odds of re-investigation. AR caseworkers provided insights regarding the intersection of family factors, organizational culture and support, and agency implementation of AR. Although participants supported AR, their ability to implement it was influenced by agency support and availability of resources to carry out the basic requirements of the policy. A clear distinction in responses emerged between those who held dual cases versus those holding only AR cases. Conclusion Although AR reduces the odds of re-investigation for low-risk families and was endorsed by caseworkers, AR policy in practice is complex and requires further evaluation, particularly from the perspective of AR caseworkers who faced implementation hurdles
Combined effects of temperature and emersion-immersion cycles on metabolism and bioenergetics of the Pacific oyster Crassostrea (Magallana) gigas
Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas. Fluctuating temperature led to energetic costly metabolic rearrangements and accumulation of proteins in oyster tissues. Elevated temperature led to high (60%) mortality and oxidative damage in survivors. Normal temperature had no major negative effects but caused metabolic shifts. Our study shows high plasticity of oyster metabolism in response to oxygen and temperature fluctuations and indicates that metabolic adjustments to oxygen deficiency are strongly modulated by the ambient temperature. Co-exposure to constant elevated temperature and intermittent hypoxia demonstrates the limits of this adaptive metabolic plasticity
Excited nucleon spectrum using a non-perturbatively improved clover fermion action
We discuss the extraction of negative-parity baryon masses from lattice QCD
calculations. The mass of the lowest-lying negative-parity state
is computed in quenched lattice QCD using an -improved clover
fermion action, and a splitting found with the nucleon mass. The calculation is
performed on two lattice volumes, and three lattice spacings enabling a study
of both finite-volume and finite-lattice-spacing uncertainties. A measurement
of the first excited radial excitation of the nucleon finds a mass considerably
larger than that of the negative-parity ground state, in accord with other
lattice determinations but in disagreement with experiment. Results are also
presented for the lightest negative-parity state.Comment: 7 pages, 5 figures, uses espcrc2. Talk presented at Workshop on
Lattice Hadron Physics, Colonial Club Resort, Cairns, Australia, July 9-18,
2001. Corrected error in determination of mass of excited, positive-parity
nucleon resonanc
Quenched Light Hadron Spectrum with the Wilson Quark Action: Final Results from CP-PACS
We report the final results of the CP-PACS calculation for the quenched light
hadron spectrum with the Wilson quark action. Our data support the presence of
quenched chiral singularities, and this motivates us to use mass formulae based
on quenched chiral perturbation theory in order to extrapolate hadron masses to
the physical point. Hadron masses and decay constants in the continuum limit
show unambiguous systematic deviations from experiment. We also report the
results for light quark masses.Comment: LATTICE98(spectrum). The poster at Lattice98 can be obtained from
http://www.rccp.tsukuba.ac.jp/people/yoshie/Lat98.Poster
A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon
The outcome of the SAMPLE Experiment suggests that the strange-quark
contribution to the nucleon magnetic moment, G_M^s(0), may be greater than
zero. This result is very difficult to reconcile with expectations based on the
successful baryon magnetic-moment phenomenology of the constituent quark model.
We show that careful consideration of chiral symmetry reveals some rather
unexpected properties of QCD. In particular, it is found that the valence
u-quark contribution to the magnetic moment of the neutron can differ by more
than 50% from its contribution to the Xi^0 magnetic moment. This hitherto
unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a
systematic error, arising from the relatively large strange quark mass used in
existing lattice calculations, that would tend to shift G_M^s(0) towards small
positive values.Comment: RevTeX, 20 pages, 12 figure
- …