619 research outputs found

    CD20 and CD40 mediated mitogenic responses in B-lineage acute lymphoblastic leukaemia

    Get PDF
    Activation of CD20, a cross-membrane ion channel, induces cell cycle progression from G0 to G1 in B lymphocytes. Subsequent activation of CD40, a membrane receptor of the nerve growth factor receptor superfamily, transits the B cells to the S phase. CD40 may also act synergistically in combination with IL-4 (B lymphocytes) or IL-3/IL-7 (B-cell precursors). We investigated the proliferative responses of B-lineage acute lymphoblastic leukaemia (ALL) cells to CD20/CD40 activation. In 18/56 ALL cases, CD20 activation resulted in significant increases in DNA synthesis. Similar, although more moderate, effects were seen of activation of CD40 in 10/44 cases. Responses to CD20 or CD40 activation were independent of co-stimulation with IL-3, IL-4 or IL-7, and various cocktails of the different growth stimuli did not act synergistically

    Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome

    Get PDF
    Between 1988 and 1999, 127 patients with poor-risk acute lymphoblastic leukemia (ALL) received a matched unrelated donor transplant using marrow procured by National Marrow Donor Program (NMDP) collection centers and sent out to 46 transplant centers worldwide. Poor risk was defined by the presence of the translocations t(9;22) (n = 97), or t(4;11) (n = 25), or t(1;19) (n = 5). Sixty-four patients underwent transplantation in first remission (CR1), 16 in CR2 or CR3, and 47 patients had relapsed ALL or primary induction failure (PIF). Overall survival at 2 years from transplant was 40% for patients in CR1, 17% in CR2/3, and 5% in PIF or relapse. Treatment-related mortality (TRM) and relapse mortality, estimated as competing risk factors, were 54% and 6%, respectively, in CR1, 75% and 8% in CR2/3, and 64% and 31% in PIF or relapse. Currently 23 CR1 patients are alive and free of disease with a median follow-up of 24 months (range, 3-97). Multivariable analysis showed that CR1, shorter interval from di

    PCN1 COST ANALYSIS OF HLA-IDENTICAL SIBLING AND VOLUNTARY UNRELATED ALLOGENEIC BONE MARROW AND PERIPHERAL BLOOD STEM CELL TRANSPLANTATION IN ADULTS WITH ACUTE MYELOCYTIC LEUKAEMIA OR ACUTE LYMPHOBLASTIC LEUKAEMIA

    Get PDF
    Item does not contain fulltextAllogeneic stem cell transplantation (SCT) is one of the most expensive medical procedures. However, only a few studies to date have addressed the costs of HLA-identical sibling transplantation and only one study has reported costs of unrelated transplantation. No recent cost analysis with a proper follow-up period and donor identification expenses is available on related or voluntary matched unrelated donor (MUD) SCT for adult AML or ALL. Therefore, we calculated direct medical (hospital) costs based on 97 adults who underwent HLA-identical sibling bone marrow transplantation (BMT) or peripheral blood stem cell transplantation (PBSCT), and patients who received a graft from a MUD between 1994 and 1999. The average costs per transplanted patient were Euro 98,334 (BMT), Euro 151,754 (MUD), and Euro 98,977 (PBSCT), including donor identification expenses, 2 years follow-up and costs of patients who were not transplanted after they had been planned to receive an allograft. The majority of these costs was generated during the hospitalisation for graft infusion. For MUD transplants, nearly one-third of these costs was spent on the search for a suitable donor. For patients who were alive after 2 years, cumulative expenses were calculated to be Euro 103,509 (BMT), Euro 173,587 (MUD), and Euro 105,906 (PBSCT)

    Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol

    Get PDF
    Cb2 is a novel protooncogene encoding the peripheral cannabinoid receptor. Previous studies demonstrated that 2 distinct noncoding first exons exist: exon-1A and exon-1B, which both splice to protein-coding exon-2. We demonstrate that in retrovirally induced murine myeloid leukemia cells with proviral insertion in Cb2, exon-1B/exon-2 Cb2 messenger RNA levels have been increased, resulting in high receptor numbers. In myeloid leukemia cells without virus insertion in this locus, low levels of only exon-1A/exon-2 Cb2 transcripts were present and receptors could not be detected. To elucidate the function of Cb2 in myeloid leukemia cells, a set of in vitro experiments was carried out using 32D/G-CSF-R (granulocyte colony-stimulating factor receptor) cells transfected with exon-1B/exon-2 Cb2 complementary DNA and a myeloid cell line carrying a virus insertion in Cb2 (ie, NFS 78). We demonstrate that a major function of the Cb2 receptor is stimulation of migration as determined in a transwell assay. Exposure of Cb2-expressing cells to different cannabinoids showed that the true ligand for Cb2 is 2-arachidonoylglycerol (2-AG), which may act as chemoattractant and as a chemokinetic agent. Furthermore, we observed a significant synergistic activity between 2-AG and interleukin-3 or G-CSF, suggesting cross-talk between the different receptor systems. Radioactive-ligand binding studies revealed significant numbers of Cb2 receptors in normal spleen. Transwell experiments carried out with normal mouse spleen cells showed 2-AG-induced migration of B220-, CD19-, immunoglobulin M-, and immunoglobulin D-expressing B lymphocytes. Our study demonstrates that a major function of Cb2 receptor expressed on myeloid leukemia cells or normal splenocytes is stimulation of migration

    Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia

    Get PDF
    BACKGROUND: Sensitization of leukemic cells with hematopoietic growth factors may enhance the cytotoxicity of chemotherapy in acute myeloid leukemia (AML). METHODS: In a multicenter randomized trial, we assigned patients (age range, 18 to 60 years) with newly diagnosed AML to receive cytarabine plus idarubicin (cycle 1) and cytarabine plus amsacrin (cycle 2) with granulocyte colony-stimulating factor (G-CSF) (321 patients) or without G-CSF (319). G-CSF was given concurrently with chemotherapy only. Idarubicin and amsacrin were given at the end of a cycle to allow the cell-cycle-dependent cytotoxicity of cytarabine in the context of G-CSF to have a greater effect. The effect of G-CSF on disease-free survival was assessed in all patients and in cytogenetically distinct prognostic subgroups. RESULTS: After induction chemotherapy, the rates of response were not significantly different in the two groups. After a median follow-up of 55 months, patients in complete remission after induction chemotherapy plus G-CSF had a higher rate of disease-free survival than patients who did not receive G-CSF (42 percent vs. 33 percent at four years, P=0.02), owing to a reduced probability of relapse (relative risk, 0.77; 95 percent confidence interval, 0.61 to 0.99; P=0.04). G-CSF did not significantly improve overall survival (P=0.16). Although G-CSF did not improve the outcome in the subgroup with an unfavorable prognosis, the 72 percent of patients with standard-risk AML benefited from G-CSF therapy (overall survival at four years, 45 percent, as compared with 35 percent in the group that did not receive G-CSF [relative risk of death, 0.75; 95 percent confidence interval, 0.59 to 0.95; P=0.02]; disease-free survival, 45 percent vs. 33 percent [relative risk, 0.70]; 95 percent confidence interval, 0.55 to 0.90; P=0.006). CONCLUSIONS: Sensitization of leukemic cells with growth factors is a clinically applicable means of enhancing the efficacy of chemotherapy in patients with AML

    Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    Get PDF
    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was previously shown to contribute to many SCF-induced cellular responses. Therefore, PI3-K-dependent signaling pathways activated by SCF were investigated. The PI3-K-dependent activation and phosphorylation of the tyrosine kinase Tec and the adapter molecule p62Dok-1 are reported. The study shows that Tec and Dok-1 form a stable complex with Lyn and 2 unidentified phosphoproteins of 56 and 140 kd. Both the Tec homology and the SH2 domain of Tec were identified as being required for the interaction with Dok-1, whereas 2 domains in Dok-1 appeared to mediate the association with Tec. In addition, Tec and Lyn were shown to phosphorylate Dok-1, whereas phosphorylated Dok-1 was demonstrated to bind to the SH2 domains of several signaling molecules activated by SCF, including Abl, CrkL, SHIP, and PLCgamma-1, but not those of Vav and Shc. These findings suggest that p62Dok-1 may function as an important scaffold molecule in cKit-mediated signaling

    Retroviral Integration Mutagenesis in Mice and Comparative Analysis in Human AML Identify Reduced PTP4A3 Expression as a Prognostic Indicator

    Get PDF
    Acute myeloid leukemia (AML) results from multiple genetic and epigenetic aberrations, many of which remain unidentified. Frequent loss of large chromosomal regions marks haplo-insufficiency as one of the major mechanisms contributing to leukemogenesis. However, which haplo-insufficient genes (HIGs) are involved in leukemogenesis is largely unknown and powerful experimental strategies aimed at their identification are currently lacking. Here, we present a new approach to discover HIGs, using retroviral integration mutagenesis in mice in which methylated viral integration sites and neighbouring genes were identified. In total we mapped 6 genes which are flanked by methylated viral integration sites (mVIS). Three of these, i.e., Lrmp, Hcls1 and Prkrir, were up regulated and one, i.e., Ptp4a3, was down regulated in the affected tumor. Next, we investigated the role of PTP4A3 in human AML and we show that PTP4A3 expression is a negative prognostic indicator, independent of other prognostic parameters. In conclusion, our novel strategy has identified PTP4A3 to potentially have a role in AML, on one hand as a candidate HIG contributing to leukemogenesis in mice and on the other hand as a prognostic indicator in human AML

    Commentaire

    Get PDF
    Therapeutic resistance remains the principal problem in acute myeloid leukemia (AML). We used area under receiver-operating characteristic curves (AUCs) to quantify our ability to predict therapeutic resistance in individual patients, where AUC=1.0 denotes perfect prediction and AUC=0.5 denotes a coin flip, using data from 4601 patients with newly diagnosed AML given induction therapy with 3+7 or more intense standard regimens in UK Medical Research Council/National Cancer Research Institute, Dutch–Belgian Cooperative Trial Group for Hematology/Oncology/Swiss Group for Clinical Cancer Research, US cooperative group SWOG and MD Anderson Cancer Center studies. Age, performance status, white blood cell count, secondary disease, cytogenetic risk and FLT3-ITD/NPM1 mutation status were each independently associated with failure to achieve complete remission despite no early death (‘primary refractoriness’). However, the AUC of a bootstrap-corrected multivariable model predicting this outcome was only 0.78, indicating only fair predictive ability. Removal of FLT3-ITD and NPM1 information only slightly decreased the AUC (0.76). Prediction of resistance, defined as primary refractoriness or short relapse-free survival, was even more difficult. Our limited ability to forecast resistance based on routinely available pretreatment covariates provides a rationale for continued randomization between standard and new therapies and supports further examination of genetic and posttreatment data to optimize resistance prediction in AML

    Tyrosine kinase receptor RON functions downstream of the erythropoietin

    Get PDF
    Erythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the receptor. We studied the roles of the docking molecules Grb2-associated binder-1 (Gab1) and Gab2 in EPO-induced signal transduction and erythropoiesis. Inhibitors of phosphatidylinositide 3-kinase and Src kinases suppressed EPO-dependent phosphorylation of Gab2. In contrast, Gab1 activation depends on recruitment and phosphorylation by the tyrosine kinase receptor RON, with which it is constitutively associated. RON activation induces the phosphorylation of Gab1, mitogen-activated protein kinase (MAPK), and protein kinase B (PKB) but not of signal transducer and activator of transcription 5 (Stat5). RON activation was sufficient to replace EPO in progenitor expansion but not in differentiation. In conclusion, we elucidated a novel mechanism specifically involved in the expansion of erythroblasts involving RON as a downstream target of the Epo
    corecore