5,264 research outputs found

    Possible persistent current in a ring made of the perfect crystalline insulator

    Full text link
    A mesoscopic conducting ring pierced by magnetic flux is known to support the persistent electron current. Here we propose possibility of the persistent current in the ring made of the perfect crystalline insulator. We consider a ring-shaped lattice of one-dimensional "atoms" with a single energy level. We express the Bloch states in the lattice as a linear combination of atomic orbitals. The discrete energy level splits into the energy band which serves as a simple model of the valence band. We show that the insulating ring (with the valence band fully filled by electrons) supports a nonzero persistent current, because each atomic orbital overlaps with its own tail when making one loop around the ring. In the tight-binding limit only the neighboring orbitals overlap. In that limit the persistent current at full filling becomes zero which is a standard result.Comment: Conference proceedings. Accepted for publication in Physica

    Galilean Lee Model of the Delta Function Potential

    Get PDF
    The scattering cross section associated with a two dimensional delta function has recently been the object of considerable study. It is shown here that this problem can be put into a field theoretical framework by the construction of an appropriate Galilean covariant theory. The Lee model with a standard Yukawa interaction is shown to provide such a realization. The usual results for delta function scattering are then obtained in the case that a stable particle exists in the scattering channel provided that a certain limit is taken in the relevant parameter space. In the more general case in which no such limit is taken finite corrections to the cross section are obtained which (unlike the pure delta function case) depend on the coupling constant of the model.Comment: 7 pages, latex, no figure

    Scalar and vector meson exchange in V->P0P0gamma decays

    Full text link
    The scalar contributions to the radiative decays of light vector mesons into a pair of neutral pseudoscalars, VP0P0γV\to P^0P^0\gamma, are studied within the framework of the Linear Sigma Model. This model has the advantage of incorporating not only the scalar resonances in an explicit way but also the constraints required by chiral symmetry. The experimental data on ϕπ0π0γ\phi\to\pi^0\pi^0\gamma, ϕπ0ηγ\phi\to\pi^0\eta\gamma, ρπ0π0γ\rho\to\pi^0\pi^0\gamma and ωπ0π0γ\omega\to\pi^0\pi^0\gamma are satisfactorily accommodated in our framework. Theoretical predictions for ϕK0Kˉ0γ\phi\to K^0\bar K^0\gamma, ρπ0ηγ\rho\to\pi^0\eta\gamma, ωπ0ηγ\omega\to\pi^0\eta\gamma and the ratio ϕf0γ/a0γ\phi\to f_0\gamma/a_0\gamma are also given.Comment: 42 pages, 11 figures. A new paragraph explaining the seminal contribution of Ref. [19] is adde

    Estimating the number of change-points in a two-dimensional segmentation model without penalization

    Full text link
    In computational biology, numerous recent studies have been dedicated to the analysis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated by this application, we consider the problem of retrieving the diagonal blocks in a matrix of observations. The theoretical properties of the least-squares estimators of both the boundaries and the number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More precisely, the contribution of the paper is to establish the consistency of these estimators. A surprising consequence of our results is that, contrary to the onedimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure

    Cross-section and polarization of neutrino-produced τ\tau's made simple

    Full text link
    Practical formulae are derived for the cross-section and polarization of the τ\tau lepton produced in deep-inelastic neutrino-nucleon scattering in the frame of the simple quark-parton model.Comment: 10 pages, no figure

    Localization Properties of Quantized Magnetostatic Modes in Nanocubes

    Full text link
    We investigate the dynamical properties of a system of interacting magnetic dipoles disposed in sites of an sc lattice and forming a cubic-shaped sample of size determined by the cube edge length (N-1)a (a being the lattice constant, N representing the number of dipolar planes). The dipolar field resulting from the dipole-dipole interactions is calculated numerically in points of the axis connecting opposite cube face centers (central axis) by collecting individual contributions to this field coming from each of the N atomic planes perpendicular to the central axis. The applied magnetic field is assumed to be oriented along the central axis, magnetizing uniformly the whole sample, all the dipoles being aligned parallelly in the direction of the applied field. The frequency spectrum of magnetostatic waves propagating in the direction of the applied field is found numerically by solving the Landau-Lifshitz equation of motion including the local (nonhomogeneous) dipolar field component; the mode amplitude spatial distributions (mode profiles) are depicted as well. It is found that only the two energetically highest modes have bulk-extended character. All the remaining modes are of localized nature; more precisely, the modes forming the lower part of the spectrum are localized in the subsurface region, while the upper-spectrum modes are localized around the sample center. We show that the mode localization regions narrow down as the cube size, N, increases (we investigated the range of N=21 to N=101), and in sufficiently large cubes one obtains practically only center-localized and surface-localized magnetostatic modes.Comment: 20 pages, 9 figures in postscript, useing Revtex4.cl

    Sub-ballistic behavior in quantum systems with L\'evy noise

    Full text link
    We investigate the quantum walk and the quantum kicked rotor in resonance subjected to noise with a L\'evy waiting time distribution. We find that both systems have a sub-ballistic wave function spreading as shown by a power-law tail of the standard deviation.Comment: 4 pages, 4 figure

    Measuring spectrum of spin wave using vortex dynamics

    Full text link
    We propose to measure the spectrum of magnetic excitation in magnetic materials using motion of vortex lattice driven by both ac and dc current in superconductors. When the motion of vortex lattice is resonant with oscillation of magnetic moments, the voltage decreases at a given current. From transport measurement, one can obtain frequency of the magnetic excitation with the wave number determined by vortex lattice constant. By changing the lattice constant through applied magnetic fields, one can obtains the spectrum of the magnetic excitation up to a wave vector of order 10 nm110\rm{\ nm^{-1}}.Comment: 4 pages, 2 figure
    corecore