78 research outputs found

    Forward Stochastic Reachability Analysis for Uncontrolled Linear Systems using Fourier Transforms

    Full text link
    We propose a scalable method for forward stochastic reachability analysis for uncontrolled linear systems with affine disturbance. Our method uses Fourier transforms to efficiently compute the forward stochastic reach probability measure (density) and the forward stochastic reach set. This method is applicable to systems with bounded or unbounded disturbance sets. We also examine the convexity properties of the forward stochastic reach set and its probability density. Motivated by the problem of a robot attempting to capture a stochastically moving, non-adversarial target, we demonstrate our method on two simple examples. Where traditional approaches provide approximations, our method provides exact analytical expressions for the densities and probability of capture.Comment: V3: HSCC 2017 (camera-ready copy), DOI updated, minor changes | V2: Review comments included | V1: 10 pages, 12 figure

    NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems

    Get PDF
    This paper presents the Neural Network Verification (NNV) software tool, a set-based verification framework for deep neural networks (DNNs) and learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection of reachability algorithms that make use of a variety of set representations, such as polyhedra, star sets, zonotopes, and abstract-domain representations. NNV supports both exact (sound and complete) and over-approximate (sound) reachability algorithms for verifying safety and robustness properties of feed-forward neural networks (FFNNs) with various activation functions. For learning-enabled CPS, such as closed-loop control systems incorporating neural networks, NNV provides exact and over-approximate reachability analysis schemes for linear plant models and FFNN controllers with piecewise-linear activation functions, such as ReLUs. For similar neural network control systems (NNCS) that instead have nonlinear plant models, NNV supports over-approximate analysis by combining the star set analysis used for FFNN controllers with zonotope-based analysis for nonlinear plant dynamics building on CORA. We evaluate NNV using two real-world case studies: the first is safety verification of ACAS Xu networks and the second deals with the safety verification of a deep learning-based adaptive cruise control system

    The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo

    Get PDF
    Forest degradation through logging is pervasive throughout the world's tropical forests, leading to changes in the three-dimensional canopy structure that have profound consequences for wildlife, microclimate and ecosystem functioning. Quantifying these structural changes is fundamental to understanding the impact of degradation, but is challenging in dense, structurally complex forest canopies. We exploited discrete-return airborne LiDAR surveys across a gradient of logging intensity in Sabah, Malaysian Borneo, and assessed how selective logging had affected canopy structure (Plant Area Index, PAI, and its vertical distribution within the canopy). LiDAR products compared well to independent, analogue models of canopy structure produced from detailed ground-based inventories undertaken in forest plots, demonstrating the potential for airborne LiDAR to quantify the structural impacts of forest degradation at landscape scale, even in some of the world's tallest and most structurally complex tropical forests. Plant Area Index estimates across the plot network exhibited a strong linear relationship with stem basal area (R2 = 0.95). After at least 11–14 years of recovery, PAI was ~28% lower in moderately logged plots and ~52% lower in heavily logged plots than that in old-growth forest plots. These reductions in PAI were associated with near-complete lack of trees >30-m tall, which had not been fully compensated for by increasing plant area lower in the canopy. This structural change drives a marked reduction in the diversity of canopy environments, with the deep, dark understorey conditions characteristic of old-growth forests far less prevalent in logged sites. Full canopy recovery is likely to take decades. Synthesis and applications. Effective management and restoration of tropical forests requires detailed monitoring of the forest and its environment. We demonstrate that airborne LiDAR can effectively map the canopy architecture of the complex tropical forests of Borneo, capturing the three-dimensional impact of degradation on canopy structure at landscape scales, therefore facilitating efforts to restore and conserve these ecosystems

    Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

    Get PDF
    Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km(2) island has lost 62% of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and composition-ally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.Peer reviewe

    Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol

    Get PDF
    Betulinic Acid (BetA) and its derivatives have been extensively studied in the past for their anti-tumor effects, but relatively little is known about its precursor Betulin (BE). We found that BE induces apoptosis utilizing a similar mechanism as BetA and is prevented by cyclosporin A (CsA). BE induces cell death more rapidly as compared to BetA, but to achieve similar amounts of cell death a considerably higher concentration of BE is needed. Interestingly, we observed that cholesterol sensitized cells to BE-induced apoptosis, while there was no effect of cholesterol when combined with BetA. Despite the significantly enhanced cytotoxicity, the mode of cell death was not changed as CsA completely abrogated cell death. These results indicate that BE has potent anti-tumor activity especially in combination with cholesterol

    Tallo: A global tree allometry and crown architecture database.

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.Natural Environment Research Council (NERC)Natural Environment Research Council (NERC); Ministry of Education, Youth and Sports of the Czech RepublicFAPEMIGUniversidad Nacional Autónoma de MéxicoUniversidad Nacional Autónoma de MéxicoConsejo Nacional de Ciencia y TecnologíaSwedish Energy AgencyUKRIFederal Ministry of Education and ResearchNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Science FoundationNational Science FoundationInternational Foundation for ScienceP3FACDynAfForNanjing Forestry UniversityJiangsu Science and Technology Special ProjectHebei UniversityAgence Nationale de la RechercheAgence Nationale de la RechercheAgua Salud ProjectU.S. Department of EnergyCAPE

    UNIT TESTING FRAMEWORK FOR MATLAB

    No full text
    Abstract In this work we present a new framework for unit testing of programs in MAT-LAB. The framework can be used if the Test Driven Development (TDD) approach is employed in the development process. The framework allows the user to write and execute test files, which verify correct behavior of the tested code. In the TDD approach, each test should verify only a small portion of certain tested function, hence the tests are referred to as unit tests. Due to that one usually has a large number of unit tests when developing complex programs. Our framework therefore offers a user-friendly way of creating and managing multiple tests
    corecore