49 research outputs found
Holocene palaeoecological changes recorded in mollusc-bearing cave sediments, the Cave above the Słupska Gate (southern Poland)
The Cave above the Słupska Gate (southern Poland) contains about 2m depth of mollusc-bearing deposits. Radiocarbon and archaeological dating indicate that these deposits accumulated during the Holocene (Preboreal to Subatlantic), although the earliest layers may date from the end of the Pleistocene. Eight layers of silts, sands and loess-like deposits were distinguished at the site. Seven of them contained identifiable snail shells, sometimes in large numbers, and sparse remains of vertebrates and archaeological artefacts. The molluscan assemblages retrieved from the cave contain over 40 taxa and 1,200 specimens. The balance of species distributed among 11 zoogeographical groups enabled us to identify four assemblages which differ in their ecological structure and in the composition of the fauna. The oldest fauna (Late Glacial/Preboreal and/or Preboreal) with many shade-loving species is typical of a cool climate. Episodes of drying are evidenced by the loess-like deposits and the occurrence of open-country snails such as the glacial relic Vallonia tenuilabris. This species disappeared in the younger part of the Early Holocene, which is the most distinctive feature of the Słupsko Hill sequence. The Middle Holocene climatic optimum is characterised by abundantand diverse fauna which is typical of mixed and deciduous forests with distinct oceanic influences. The critical Discus ruderatus and Discus rotundatus succession reflects the general trends in European malacofaunas. The Late Holocene record may bear some hiatuses, but the shift away from a complete forest fauna is evident
Holocene palaeoecological changes recorded in mollusc-bearing cave sediments, the Cave above the Słupska Gate (southern Poland)
The Cave above the Słupska Gate (southern Poland) contains about 2m depth of mollusc-bearing deposits. Radiocarbon and archaeological dating indicate that these deposits accumulated during the Holocene (Preboreal to Subatlantic), although the earliest layers may date from the end of the Pleistocene. Eight layers of silts, sands and loess-like deposits were distinguished at the site. Seven of them contained identifiable snail shells, sometimes in large numbers, and sparse remains of vertebrates and archaeological artefacts. The molluscan assemblages retrieved from the cave contain over 40 taxa and 1,200 specimens. The balance of species distributed among 11 zoogeographical groups enabled us to identify four assemblages which differ in their ecological structure and in the composition of the fauna. The oldest fauna (Late Glacial/Preboreal and/or Preboreal) with many shade-loving species is typical of a cool climate. Episodes of drying are evidenced by the loess-like deposits and the occurrence of open-country snails such as the glacial relic Vallonia tenuilabris. This species disappeared in the younger part of the Early Holocene, which is the most distinctive feature of the Słupsko Hill sequence. The Middle Holocene climatic optimum is characterised by abundantand diverse fauna which is typical of mixed and deciduous forests with distinct oceanic influences. The criticalDiscus ruderatus and Discus rotundatus succession reflects the general trends in European malacofaunas. The Late Holocene record may bear some hiatuses, but the shift away from a complete forest fauna is evident
Is there Initial Upper Palaeolithic in Western Tian Shan? Example of an open-air site Katta Sai 2 (Uzbekistan)
The paper presents the results of multidisciplinary studies on the open-air loess site Katta Sai 2 located in thewestern piedmonts of Tian Shan in Uzbekistan. Two archaeological horizons contain features associated with theInitial Upper Palaeolithic (IUP) - both Levallois and blade/bladelet volumetric technology, together with anUpper Palaeolithic toolkit. The cultural traits observed in Katta Sai 2 might have local roots dating back to MIS 5aand can be found in so-called Obirakhmatian technocomplex determined in several archaeological sites in theregion. Thus, the obtained results question the hypothesis of non-local origins of IUP complexes associated withthe early modern human migration from the Near East to Mongolia along the piedmonts of Pamir and Tian Shan.Until reliable anthropological and genetic data are obtained, it seems to be too early to conclude about therelationship between modern human migration and the appearance of IUP assemblages, at least across thewestern parts of Central Asia
Abrasive waterjet (AWJ) forces-indicator of cutting system malfunction
Measurements enabling the online monitoring of the abrasive waterjet (AWJ) cutting process are still under development. This paper presents an experimental method which can be applicable for the evaluation of the AWJ cutting quality through the measurement of forces during the cutting process. The force measuring device developed and patented by our team has been used for measurement on several metal materials. The results show the dependence of the cutting to deformation force ratio on the relative traverse speed. Thus, the force data may help with a better understanding the interaction between the abrasive jet and the material, simultaneously impacting the improvement of both the theoretical and empirical models. The advanced models could substantially improve the selection of suitable parameters for AWJ cutting, milling or turning with the desired quality of product at the end of the process. Nevertheless, it is also presented that force measurements may detect some undesired effects, e.g., not fully penetrated material and/or some product distortions. In the case of a proper designing of the measuring device, the force measurement can be applied in the online monitoring of the cutting process and its continuous control.Web of Science147art. no. 168
Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA
The harsh climatic conditions during the Last Glacial Maximum (LGM) period have been considered the cause of local extinctions and major faunal reorganizations that took place at the end of the Pleistocene. Recent studies have shown, however, that in addition many of these ecological events were associated with abrupt climate changes during the so-called Late Glacial and the Pleistocene/Holocene transition. Here we used ancient DNA to investigate the impact of those changes on European populations of temperate vole species (Microtus arvalis). The genetic diversity of modern populations and the fossil record suggests that the species may have survived cold episodes, like LGM, not only in the traditional Mediterranean glacial refugia but also at higher latitudes in cryptic northern refugia located in Central France, the northern Alps as well as the Carpathians. However, the details of the post-glacial recolonization and the impact of the Late Glacial and Early Holocene climate changes on the evolutionary history of the common vole remains unclear. To address this issue, we analysed mtDNA cytochrome b sequences from more than one hundred common vole specimens from 36 paleontological and archaeological sites scattered across Europe. Our data suggest that populations from the European mid- and high latitudes suffered a local population extinction and contraction as a result of Late Glacial and Early Holocene climate and environmental changes. The recolonization of earlier abandoned areas took place in the Mid- to Late Holocene. In contrast, at low latitudes, in Northern Spain there was a continuity of common vole populations. This indicates different responses of common vole populations to climate and environmental changes across Europe and corroborates the hypothesis that abrupt changes, like those associated with Younger Dryas and the Pleistocene/Holocene transition, had a significant impact on populations at the mid- and high latitudes of Europe
Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (J¨ager, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799)
The wooly rhinoceros (Coelodonta antiquitatis) and forest rhinoceros (Stephanorhinus kirchbergensis) were prominent representatives of the Middle and Late Pleistocene glacial and interglacial faunas of Eurasia. Their diet has traditionally been inferred on functional morphology of the dentition and skull. In rare cases, food remains are preserved in the fossas of the teeth or as gut content. New approaches to infer diet include the study of isotopes and mesowear. Here we apply all four methods to infer the diet of these emblematic rhinoceros’ species and compare the food actually taken with the food available, as indicated by independent botanical data from the localities where the rhinoceros’ fossils were found: Gorz´ow Wielkopolski (Eemian) and Starunia (Middle Vistulian) as well as analysis of literature data. We also made inferences on the season of death of these individuals. Our results indicate that the woolly rhino in both Europe and Asia (Siberia) was mainly a grazer, although at different times of the year and depending on the region its diet was also supplemented by leaves of shrubs and trees. According to the results of isotope studies, there were important individual variations. The data show a clear seasonal variation in the isotope composition of this rhino’s diet. In contrast, Stephanorhinus kirchbergensis was a browser, though its diet included low-growing vegetation. Its habitat consisted of various types of forests, from riparian to deciduous and mixed forests, and open areas. The diet of this species consisted of selected items of vegetation, also including plants growing near both flowing and standing waters. The food remains from the fossae of the teeth indicated flexible browsing, confirming the previous interpretations based on functional morphology and stable isotopes. Long-term data from mesowear and microwear across a wider range of S. kirchbergensis fossils indicate a more mixed diet with a browsing component. The different diets of both of rhinoceros reflect not only the different habitats, but also climate changes that occurred during the Late Pleistocene
Genetic insights into the social organization of Neanderthals
Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range
The influence of religious identity and socio-economic status on diet over time, an example from medieval France
In Southern France as in other parts of Europe, significant changes occurred in settlement patterns between the end of Antiquity and the beginning of the Middle Ages. Small communities gathered to form, by the tenth century, villages organized around a church. This development was the result of a new social and agrarian organization. Its impact on lifestyles and, more precisely, on diet is still poorly understood. The analysis of carbon and nitrogen isotopes in bone collagen from the inhabitants of the well-preserved medieval rural site Missignac-Saint Gilles le Vieux (fifth to thirteenth centuries, Gard, France) provides insight into their dietary practices and enables a discussion about its transformation over time. A sample of 152 adult individuals dated from 675 to 1175 AD (75 females, 77 males) and 75 specimens from 16 non-human species were analyzed. Results show the exploitation of freshwater, marine, and terrestrial ecosystems as well as various breeding practices specific to each species. The use of both C4 and halophyte plants for feeding domestic animals was also observed. Concerning human dietary practices, a change seemed to occur at the beginning of the tenth century with an increase of δ15N values and a decrease of δ13C values. This corresponds to the introduction of a significant amount of freshwater resources into the diet and could be related to the evolution of the Catholic doctrine. A concomitant diversification of access to individual food resources was also observed, probably linked to the increased diversity of practice inside a population otherwise perceived as one community
Diversity of muskox Ovibos moschatus (Zimmerman, 1780) (Bovidae, Mammalia) in time and space based on cranial morphometry
Muskox Ovibos moschatus is a Pleistocene relic, which has survived only in North America and Greenland. During the Pleistocene, it was widely distributed in Eurasia and North America. To evaluate its morphological variability through time and space, we conducted an extensive morphometric study of 217 Praeovibos and Ovibos skull remains. The analyses showed that the skulls grew progressively wider from Praeovibos sp. to the Pleistocene O. moschatus, while from the Pleistocene to the recent O. moschatus, the facial regions of the skull turned narrower and shorter. We also noticed significant geographic differences between the various Pleistocene Ovibos crania. Siberian skulls were usually larger than those from Western and Central Europe. Eastern Europeanmuskoxen also exceeded in size those from the other regions of Europe. The large size of Late Pleistocene muskoxen from regions located in more continental climatic regimes was probably associated with the presence of more suitable food resources in steppe-tundra settings. Consistently, radiocarbon-dated records of this species are more numerous in colder periods, when the steppe-tundra was widely spread, and less abundant in warmer periods