1,966 research outputs found
Modelling of Supercapacitors: Factors Influencing Performance
The utilizable capacitance of Electrochemical Double Layer Capacitors (EDLCs) is a function of the frequency at which they are operated and this is strongly dependent on the construction and physical parameters of the device. We simulate the dynamic behavior of an EDLC using a spatially resolved model based on the porous electrode theory. The model of Verbrugge and Liu (J. Electrochem. Soc. 152, D79 (2005)) was extended with a dimension describing the transport into the carbon particle pores. Our results show a large influence of the electrode thickness (Le), separator thickness (Ls) and electrolyte conductivity (Îș) on the performance of EDLCs. In agreement with experimental data, the time constant was an increasing function of Le and Ls and a decreasing function of Îș. The main limitation was found to be on the scale of the whole cell, while transport into the particles became a limiting factor only if the particle size was unrealistically large. The results were generalized into a simplified relation allowing for a quick evaluation of performance for the design of new devices. This work provides an insight into the performance limitation of EDLCs and identifies the critical parameters to consider for both systems engineers and material scientists
Effects of neuromuscular training (NEMEX-TJR) on patient-reported outcomes and physical function in severe primary hip or knee osteoarthritis: a controlled before-and-after study
Background: The benefits of exercise in mild and moderate knee or hip osteoarthritis (OA) are apparent, but the evidence in severe OA is less clear. We recently reported that neuromuscular training was well tolerated and feasible in patients with severe primary hip or knee OA. The aims of this controlled before-and-after study were to compare baseline status to an age-matched population-based reference group and to examine the effects of neuromuscular training on patient-reported outcomes and physical function in patients with severe primary OA of the hip or knee. Methods: 87 patients (60-77 years) with severe primary OA of the hip (n = 38, 55% women) or knee (n = 49, 59% women) awaiting total joint replacement (TJR) had supervised, neuromuscular training (NEMEX-TJR) in groups with individualized level and progression of training. A reference group (n = 43, 53% women) was included for comparison with patients' data. Assessments included self-reported outcomes (HOOS/KOOS) and measures of physical function (chair stands, number of knee bends/30 sec, knee extensor strength, 20-meter walk test) at baseline and at follow-up before TJR. Analysis of covariance (ANCOVA) was used for comparing patients and references and elucidating influence of demographic factors on change. The paired t-test was used for comparisons within groups. Results: At baseline, patients reported worse scores than the references in all HOOS/KOOS subscales (hip 27-47%, knee 14-52%, of reference scores, respectively) and had functional limitations (hip 72-85%, knee 42-85%, of references scores, respectively). NEMEX-TJR (mean 12 weeks (SD 5.6) of training) improved self-reported outcomes (hip 9-29%, knee 7-20%) and physical function (hip 3-18%, knee 5-19%) (p = 15%) in HOOS/KOOS subscales by training. The improvement in HOOS/KOOS subscale ADL was greater for patients with knee OA than hip OA, while the improvement in subscale Sport/Rec was greater for patients with hip OA than knee OA. Conclusions: Both self-reported outcomes and physical function were clearly worse compared with the reference group. Neuromuscular training with an individualized approach and gradual progression showed promise for improving patient-reported outcomes and physical function even in older patients with severe primary OA of the hip or knee
Analysis of the Accuracy of Prediction of the Celestial Pole Motion
VLBI observations carried out by global networks provide the most accurate
values of the precession-nutation angles determining the position of the
celestial pole; as a rule, these results become available two to four weeks
after the observations. Therefore, numerous applications, such as satellite
navigation systems, operational determination of Universal Time, and space
navigation, use predictions of the coordinates of the celestial pole. In
connection with this, the accuracy of predictions of the precession- nutation
angles based on observational data obtained over the last three years is
analyzed for the first time, using three empiric nutation models---namely,
those developed at the US Naval Observatory, the Paris Observatory, and the
Pulkovo Observatory. This analysis shows that the last model has the best of
accuracy in predicting the coordinates of the celestial pole. The rms error for
a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p
425 Pain Representation In Fibromyalgia Patients And Healthy Controls Using EventâRelated Fmri
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90315/1/S1090-3801_06_60428-X.pd
Electrical properties of a-antimony selenide
This paper reports conduction mechanism in a-\sbse over a wide range of
temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity
measured as a function of temperature shows semiconducting behaviour with
activation energy E= 0.42 eV. Thermally induced changes in the
electrical and dielectric properties of a-\sbse have been examined. The a.c.
conductivity in the material has been explained using modified CBH model. The
band conduction and single polaron hopping is dominant above room temperature.
However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at
http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]
- âŠ