201 research outputs found

    The effect of neutrinos on the initial fireballs in gamma-ray bursts

    Full text link
    We investigate the fate of very compact, sudden energy depositions that may lie at the origin of gamma-ray bursts. Following on from the work of Cavallo and Rees (1978), we take account of the much higher energies now believed to be involved. The main effect of this is that thermal neutrinos are present and energetically important. We show that these may provide sufficient cooling to tap most of the explosion energy. However, at the extreme energies usually invoked for gamma-ray bursts, the neutrino opacity suffices to prevent dramatic losses, provided that the heating process is sufficiently fast. In a generic case, a few tens of percent of the initial fireball energy will escape as an isotropic millisecond burst of thermal neutrinos with a temperature of about 60 MeV, which is detectable for nearby gamma-ray bursts and hypernovae. For parameters we find most likely for gamma-ray burst fireballs, the dominant processes are purely leptonic, and thus the baryon loading of the fireball does not affect our conclusions.Comment: 10 pages, 4 figures. To be submitted to MNRA

    IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    Full text link
    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10^5 < E/GeV < 10^8. We have used the latest estimated discovery potential of the IceCube-86 array at the 5-sigma level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, alpha, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of alpha = 2.7 obtained from fits to cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper bound and IceCube-86 discovery potential used, explanation of AGN flux models improved, only upgoing neutrinos used, conclusions strengthened. Accepted for publication in JCA

    Status of neutrino astronomy

    Full text link
    Astrophysical neutrinos can be produced in proton interactions of charged cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in balloon, satellite and air shower experiments every day, from below 1e9 eV up to macroscopic energies of 1e21 eV. The observation of different photon fields has been done ever since, today with detections ranging from radio wavelengths up to very high-energy photons in the TeV range. The leading question for neutrino astronomers is now which sources provide a combination of efficient proton acceleration with sufficiently high photon fields or baryonic targets at the same time in order to produce a neutrino flux that is high enough to exceed the background of atmospheric neutrinos. There are only two confirmed astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit and emitted neutrinos at MeV energies. The aim of large underground Cherenkov telescopes like IceCube and KM3NeT is the detection of neutrinos at energies above 100 GeV. In this paper, recent developments of neutrino flux modeling for the most promising extragalactic sources, gamma ray bursts and active galactic nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4 figures, 1 tabl

    Status of neutrino astronomy

    Full text link
    Astrophysical neutrinos can be produced in proton interactions of charged cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in balloon, satellite and air shower experiments every day, from below 1e9 eV up to macroscopic energies of 1e21 eV. The observation of different photon fields has been done ever since, today with detections ranging from radio wavelengths up to very high-energy photons in the TeV range. The leading question for neutrino astronomers is now which sources provide a combination of efficient proton acceleration with sufficiently high photon fields or baryonic targets at the same time in order to produce a neutrino flux that is high enough to exceed the background of atmospheric neutrinos. There are only two confirmed astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit and emitted neutrinos at MeV energies. The aim of large underground Cherenkov telescopes like IceCube and KM3NeT is the detection of neutrinos at energies above 100 GeV. In this paper, recent developments of neutrino flux modeling for the most promising extragalactic sources, gamma ray bursts and active galactic nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4 figures, 1 tabl

    Status of neutrino astronomy

    Full text link
    Astrophysical neutrinos can be produced in proton interactions of charged cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in balloon, satellite and air shower experiments every day, from below 1e9 eV up to macroscopic energies of 1e21 eV. The observation of different photon fields has been done ever since, today with detections ranging from radio wavelengths up to very high-energy photons in the TeV range. The leading question for neutrino astronomers is now which sources provide a combination of efficient proton acceleration with sufficiently high photon fields or baryonic targets at the same time in order to produce a neutrino flux that is high enough to exceed the background of atmospheric neutrinos. There are only two confirmed astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit and emitted neutrinos at MeV energies. The aim of large underground Cherenkov telescopes like IceCube and KM3NeT is the detection of neutrinos at energies above 100 GeV. In this paper, recent developments of neutrino flux modeling for the most promising extragalactic sources, gamma ray bursts and active galactic nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4 figures, 1 tabl

    Quantum treatment of neutrino in background matter

    Full text link
    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLνSL\nu), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in the background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ("spin light of electron in matter", SLeSLe) that can be emitted by the electron in this case.Comment: 10 pages, in: Proceedings of QFEXT'05 (The Seventh Workshop on Quantum Field Theory under the Influence of External Conditions, IEEC, CSIC and University of Barcelona, Barcelona, Catalonia, Spain, 5-9 September 2005.), ed. by Emilio Elizalde and Sergei Odintsov; published in Journal of Physics

    A Three-Point Cosmic Ray Anisotropy Method

    Full text link
    The two-point angular correlation function is a traditional method used to search for deviations from expectations of isotropy. In this paper we develop and explore a statistically descriptive three-point method with the intended application being the search for deviations from isotropy in the highest energy cosmic rays. We compare the sensitivity of a two-point method and a "shape-strength" method for a variety of Monte-Carlo simulated anisotropic signals. Studies are done with anisotropic source signals diluted by an isotropic background. Type I and II errors for rejecting the hypothesis of isotropic cosmic ray arrival directions are evaluated for four different event sample sizes: 27, 40, 60 and 80 events, consistent with near term data expectations from the Pierre Auger Observatory. In all cases the ability to reject the isotropic hypothesis improves with event size and with the fraction of anisotropic signal. While ~40 event data sets should be sufficient for reliable identification of anisotropy in cases of rather extreme (highly anisotropic) data, much larger data sets are suggested for reliable identification of more subtle anisotropies. The shape-strength method consistently performs better than the two point method and can be easily adapted to an arbitrary experimental exposure on the celestial sphere.Comment: Fixed PDF erro
    corecore