677 research outputs found
Shear-induced pressure changes and seepage phenomena in a deforming porous layer-I
We present a model for flow and seepage in a deforming, shear-dilatant sensitive porous layer that enables estimates of the excess pore fluid pressures and flow rates in both the melt and solid phase to be captured simultaneously as a function of stress rate. Calculations are relevant to crystallizing magma in the solidosity range 0.5–0.8 (50–20 per cent melt), corresponding to a dense region within the solidification front of a crystallizing magma chamber. Composition is expressed only through the viscosity of the fluid phase, making the model generally applicable to a wide range of magma types. A natural scaling emerges that allows results to be presented in non-dimensional form. We show that all length-scales can be expressed as fractions of the layer height H, timescales as fractions of H2(nβ'θ+ 1)/(θk) and pressures as fractions of . Taking as an example the permeability k in the mush of the order of magnitude 1015 m2 Pa1 s1, a layer thickness of tens of metres and a mush strength (θ) in the range 108–1012 Pa, an estimate of the consolidation time for near-incompressible fluids is of the order of 105–109 s. Using mush permeability as a proxy, we show that the greatest maximum excess pore pressures develop consistently in rhyolitic (high-viscosity) magmas at high rates of shear ( , implying that during deformation, the mechanical behaviour of basaltic and rhyolitic magmas will differ. Transport parameters of the granular framework including tortuosity and the ratio of grain size to layer thickness (a/H) will also exert a strong effect on the mechanical behaviour of the layer at a given rate of strain. For dilatant materials under shear, flow of melt into the granular layer is implied. Reduction in excess pore pressure sucks melt into the solidification front at a velocity proportional to the strain rate. For tectonic rates (generally 1014 s1), melt upwelling (or downwelling, if the layer is on the floor of the chamber) is of the order of cm yr1. At higher rates of loading comparable with emplacement of some magmatic intrusions (1010 s1), melt velocities may exceed effects due to instabilities resulting from local changes in density and composition. Such a flow carries particulates with it, and we speculate that these may become trapped in the granular layer depending on their sizes. If on further solidification the segregated grain size distribution of the particulates is frozen in the granular layer, structure formation including layering and grading may result. Finally, as the process settles down to a steady state, the pressure does not continue to decrease. We find no evidence for critical rheological thresholds, and the process is stable until so much shear has been applied that the granular medium fails, but there is no hydraulic failure
EVALUATION OF THERMAL AND MECHANICAL PROPERTIES OF DEMONSTRATION WALL UTILIZING PHASE CHANGE CEMENTITIOUS MATERIALS
International project PoroPCM involves partners from Germany, Czech Republic, Spain and Japan with the objective to develop new multifunctional Phase Change Materials modified porous cementitious nanocomposite (PoroPCM). Such material can be utilized for storing heat energy in the insulation layer of buildings compared to commonly used insulation materials since the phase change increases heat capacity. This enhanced feature reduces the amount of energy necessary for running the heating/cooling system. For the testing of the newly developed phase change cementitious composite a demonstration wall will be developed and tested for its thermal as well as mechanical performance. The topic of the paper is the description of the properties of the new phase change cementitious nanocomposite. The main emphasis of the paper is the description of the demonstration wall behaviour under typical environmental conditions. The wall design is supported by numerical simulation of the wall physical parameters. The numerical modelling involves the definition of suitable numerical models for the simulation of the thermal properties of the new phase change nanocomposite. The numerical model is then used to demonstrate the performance of the wall layer design. The presented pilot results show efficiency increase of the insulation material in the range 15–70%. Also modelling of wind resistance of the layered structure is included. The developed wall design and PoroPCM material will be tested and verified by a large scale test in the final year of the project
Capturing Patient Value in an Economic Evaluation
OBJECTIVE: Economic evaluations predominantly use generic outcomes, such as EuroQol-5 Dimension (EQ-5D), to assess the health status. However, because of the generic nature, they are less suitable to capture the quality of life of patients with specific conditions. Given the transition to patient-centered (remote) care delivery, this study aims to evaluate the possibility to use disease-specific measures in a cost-effectiveness analysis (CEA).METHODS: A real-life cohort from Maasstad Hospital (2020-2021) in the Netherlands, with 772 Rheumatoid Arthritis (RA) patients, was used to assess the cost-effectiveness of electronic consultations (e-consultations) compared with face-to-face consultations. The Incremental Cost-Effectiveness Ratio (ICER) based on the generic EQ-5D was compared with ICER's based on RA specific measures; Rheumatoid Arthritis Impact of Disease (RAID) and Health Assessment Questionnaire-Disability Index (HAQ-DI). To compare the cost-effectiveness of these different measures, HAQ-DI and RAID were expressed in QALYs via estimated conversion equations.CONCLUSIONS: The conventional ICER (e.g. EQ-5D) indicates that e-consultations are cost-effective with cost savings of - €161k per QALY gained for a prevalent RA cohort treated in a secondary trainee hospital. RA specific measures show similar results, with ICER's of - €163k per HAQ-DI(QALY) and - €223k per RAID(QALY) gained. RA specific measures capture patient-relevant domains and offer the opportunity to improve the assessment and treatment of the disease impact.DISCUSSION: Disease-specific patient-reported outcome measures (PROMs) offer a promising alternative for traditional measures in economic evaluations, capturing patient-relevant domains more comprehensively. As PROMs are increasingly applied in clinical practice, the next step entails modelling of a RA patient-wide conversion equation to implement PROMs in economic evaluations. This article is protected by copyright. All rights reserved.</p
Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression
Background:
The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p>
Methodology/Principal Findings:
Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p>
Conclusion/Significance:
IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p>
Particle migration due to non-uniform laminar flow
Using methods of granular mechanics in the quasi-static limit, with inter-particle interactions derived from the lubrication limit, the intensity of velocity fluctuations in the slurry is associated with fluctuations in the local distribution of inter-particle distances. These are shown to consist of a vector intensity and a scalar intensity; the former couples to the first velocity gradient, the latter (which is associated with solidosity fluctuations) couples to the second velocity gradient. Rheologies for both are presented, as is the rheology that links the particle pressure to the intensity of the velocity fluctuations (also known as the ‘granular temperature’) to the dispersive pressure. The rheologies are informed by experimental results. The granular temperature profile, modified from previous work, is responsible for axial particle migration (Bagnold effect). Two broad categories are assessed: symmetrical vertical and non-symmetrical lateral flow. For the latter the roughness of the boundary walls and a non-zero density contrast are important; this case is studied for a system in which flow effects are confined to the immediate vicinity of the boundary. Sensitivity analysis reveals several key variables including the parameters that control a slipping boundary condition and the mean solidosity in the conduit. For lateral flow, a sedimentary deposit with a solidosity profile may develop near the upper or lower boundary. The theory predicts an approximate relation between the fluid-particle density contrast and sediment thickness as a function of the mean flow rate, conduit width, the mean particle diameter and fluid viscosity that has utility in a range of engineering and geological situations where particulate matter is transported in the laminar flow regime
- …