58 research outputs found

    Cloud Host Selection using Iterative Particle-Swarm Optimization for Dynamic Container Consolidation

    Get PDF
    A significant portion of the energy consumption in cloud data centres can be attributed to the inefficient utilization of available resources due to the lack of dynamic resource allocation techniques such as virtual machine migration and workload consolidation strategies to better optimize the utilization of resources. We present a new method for optimizing cloud data centre management by combining virtual machine migration with workload consolidation. Our proposed Energy Efficient Particle Swarm Optimization (EE-PSO) algorithm to improve resource utilization and reduce energy consumption. We carried out experimental evaluations with the Container CloudSim toolkit to demonstrate the effectiveness of the proposed EE-PSO algorithm in terms of energy consumption, quality of service guarantees, the number of newly created VMs, and container migrations

    Correlation and path analysis studies in groundnut under different environment

    Get PDF
    Not AvailableIn groundnut strong positive association was noticed between pod yield per plant and kernel yield per plant, oil yield per plant and significant and negative association with late leaf spot severity and rust incidence irrespective of the environments. Pod yield was also correlated with 100- kernel weight, plant height and oil content in environment III. The magnitude and direct association of pod yield with other characters varied from environment to environment. Inter correlation estimates for yield components revealed that plant height, 100-kernel weight, kernel yield per plant, oil yield per plant, late leaf spot severity, number of matured pods per plant, harvest index and plant height were significantly associated with one another and also with pod yield per plant which indicated that these characters were important components for improvement of pod yield in groundnut. This indicated that selection of genotypes based on oil yield per plant and kernel yield per plant is advantageous than the other characters.Not Availabl

    Prophylactic combined supplementation of choline and docosahexaenoic acid attenuates vascular cognitive impairment and preserves hippocampal cell viability in rat model of chronic cerebral hypoperfusion ischemic brain injury

    Get PDF
    Background: Stroke is the second cause of mortality in the world and third leading cause of disability in surviving victims. Cerebral ischemic cascade involves multiple pathways that can result in motor and cognitive deficits. The current treatment strategy focuses mainly on motor recovery, and the management of post-stroke cognitive impairment is largely neglected. Similarly, very few studies have explored the prophylactic combined synergetic treatment strategies that have the potential to target multiple pathways in the ischemic cascade to alleviate vascular cognitive impairment (VCI) in the event of an ischemic stroke. Choline and docosahexaenoic acid (Cho-DHA) are both essential neuronal membrane phospholipid precursors, known to be important in enhancing cognitive functions. The objective of present study was to explore the prophylactic efficacy of combined Cho-DHA supplementation (Cho-DHA suppl.) in attenuating VCI in a rodent model of ischemic brain injury.Methods: An 10-months-old male Wistar rats were subdivided into four groups (n=8/group); normal control (NC), bilateral common carotid artery occlusion (BCCAO) induced ischemic brain injury group, sham BCCAO (S-BCCAO) group, and prophylactic combined Cho-DHA suppl. BCCAO group. Subsequently, all groups of rats were tested for cognition and neuro-morphological changes in the hippocampus.Results: BCCAO rats showed significant learning and memory deficits (p<0.05) and neuronal injury compared to S-BCCAO and NC rats. These cognitive deficits and neuronal injury were significantly (p<0.01) attenuated in Cho-DHA suppl. BCCAO rats.Conclusion: Prophylactic combined Cho-DHA suppl. may be envisaged as an effective preventive strategy to attenuate VCI and neuronal injury in high-risk individuals susceptible for a future event of an ischemic stroke

    Simple temperature modeling of proton exchange membrane fuel cell using load current and ambient temperature variations

    Get PDF
    ABSTRACT: This paper proposes a simplified proton-exchange membrane fuel cell (PEMFC) temperature model for the purpose of estimating PEMFC temperatures with high accuracy using air-cooling systems. Besides knowing that most of the existing models were designed for specific systems, the proposed model also focuses on generalizing the conventional temperature model for easy adoption by other PEMFCs. The proposed model is developed based on the first-order exponential equation to avoid the limitations of complex mechanistic temperature models. The model uses only the information available from typical commercial PEMFCs, the main inputs of which are the current, elapsed time, and ambient temperature. In addition, the PEMFC area, number of cells in the stack, and high/low operating currents were incorporated in the proposed model to ensure its generalizability and applicability to different PEMFC technologies with air-cooling systems under various ambient conditions. The required model parameters were optimized using the Harris hawks optimization method. The proposed model was validated using experiments conducted on the Horizon-500Β W and NEXA-1.2Β kW PEMFC systems equipped with air-cooling mechanisms under different ambient temperatures and load currents. The root mean square error of all the examined cases was less than 0.5. The proposed model is helpful for simulations, dynamic real-time controllers, and emulators because of its fast response and high accuracy

    Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    Get PDF
    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only

    Co-Depletion of Cathepsin B and uPAR Induces G0/G1 Arrest in Glioma via FOXO3a Mediated p27Kip1 Upregulation

    Get PDF
    Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of these molecules on cell cycle progression has not been thoroughly examined.Cathepsin B and uPAR single and bicistronic siRNA plasmids were used to downregulate these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated increased expression of p27(Kip1) and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects could be mediated by alphaVbeta3/PI3K/AKT/FOXO pathway as observed by the decreased alphaVbeta3 expression, PI3K and AKT phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased expression of p27(Kip1) and FOXO3a when treated with Ly294002 (10 microM) and increased luciferase expression with the siRNA and Ly294002 treatments when the FOXO binding promoter region of p27(Kip1) was used. Our treatment also reduced the expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E complex formation was reduced significantly.Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating the PI3K/AKT signaling pathway and further increases expression of p27(Kip1) accompanied by the binding of FOXO3a to its promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation of cathepsin B and uPAR in SNB19 and U251 glioma cells

    Downregulation of uPAR and Cathepsin B Induces Apoptosis via Regulation of Bcl-2 and Bax and Inhibition of the PI3K/Akt Pathway in Gliomas

    Get PDF
    Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes.In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU)-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-Ξ², p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results.In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas

    CODEN: RJCABP MYCOFLORA OF DUMP YARD: A CASE STUDY ASPERGILLUS FLAVUS AND PHANEROCHAETE CHRYSOSPORIUM AS POTENTIAL DELIGNIFYING MYCOFLORA OF DUMP YARD: A CASE STUDY

    No full text
    ABSTRACT The increasing urbanization, industrialization has direct impact on urban waste. Solid waste management is an important factor of environmental hygiene and needs to be integrated with total environmental planning. Biodegradation is termed as natural process of recycling. Fungi play an important role in biodegradation as they are more active in carbon assimilation than bacteria and actinomycetes. The results of physico-chemical parameters of selected soil samples at different depths showed an increase in organic carbon content than surface soils and sub surface soils. The pH of all samples was neutral to slightly alkaline, shows the favorable condition for the growth of fungi. The scope of the present work attempts to search for an effective method of delignification by using lignolytic soil fungi. The cellulose and lignin degradation has been effectively done by Phanerochaete Chrysosporium (80%) and Aspergillus flavus (75%). Where Phanerochaete Chrysosporium shown the maximum release of carbon dioxide during biodegradation. Pre and post degradation studies were carried where there is a decrease in pH of the soils were observed due to the degradation by fungal species
    • …
    corecore