9 research outputs found

    Ethanol Does Not Promote MeIQx-initiated Rat Colon Carcinogenesis Based on Evidence from Analysis of a Colon Cancer Surrogate Marker

    Get PDF
    Epidemiological studies suggest that alcohol consumption increases the risk of developing colorectal cancer. However, the data are confounded by numerous cosegregating variables. To cast further light on the relationships between alcohol intake and colon cancer development, 21-day-old male F344/DuCrj rats were fed 200 ppm 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) in their diet for 8 weeks and doses of 0, 0.1, 0.3, 1, 3, 10 and 20% of ethanol in their drinking water ad libitum for 16 weeks thereafter. The rats were sacrificed after 24 weeks of experiment, and aberrant crypt foci (ACF), surrogate lesions for colon cancer, were examined under a light microscope at low magnification. Ethanol was found not to affect the ACF formation at any dose compared with the initiated-controls. Furthermore, ethanol did not alter colon epithelial cell proliferation. These data, obtained by analysis of a colon cancer surrogate marker lesion, indicate that ethanol lacks promotion activity for MeIQx-initiated rat colon carcinogenesis

    Morphological and microarray analyses of human hepatocytes from xenogeneic host livers.

    No full text
    We previously produced mice with human hepatocyte (h-hep) chimeric livers by transplanting h-heps into albumin enhancer/promoter-driven urokinase-type plasminogen activator-transgenic severe combined immunodeficient (SCID) mice with liver disease. The chimeric livers were constructed with h-heps, mouse hepatocytes, and mouse hepatic sinusoidal cells (m-HSCs). Here, we investigated the morphological features of the chimeric livers and the h-hep gene expression profiles in the xenogeneic animal body. To do so, we performed immunohistochemistry, morphometric analyses, and electron microscopic observations on chimeric mouse livers, and used microarray analyses to compare gene expression patterns in hepatocytes derived from chimeric mouse hepatocytes (c-heps) and h-heps. Morphometric analysis revealed that the ratio of hepatocytes to m-HSCs in the chimeric mouse livers were twofold higher than those in the SCID mouse livers, corresponding to twin-cell plates in the chimeric mouse liver. The h-heps in the chimeric mouse did not show hypoxia even in the twin-cell plate structure, probably because of low oxygen consumption by the h-heps relative to the mouse hepatocytes (m-heps). Immunohistochemical and electron microscopic examinations revealed that the sinusoids in the chimeric mouse livers were normally constructed with h-heps and m-HSCs. However, a number of microvilli projected into the intercellular clefts on the lateral aspects of the hepatocytes, features typical of a growth phase. Microarray profiles indicated that similar to 82% of 16 605 probes were within a twofold range difference between h-heps and c-heps. Cluster and principal component analyses showed that the gene expression patterns of c-heps were extremely similar to those of h-heps. In conclusion, the chimeric mouse livers were normally reconstructed with h-heps and m-HSCs, and expressed most human genes at levels similar to those in human livers, although the chimeric livers showed morphological characteristics typical of growth. Laboratory Investigation (2013) 93, 54-71; doi:10.1038/labinvest.2012.158; published online 12 November 201

    Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update

    No full text
    corecore