16 research outputs found

    Prediction of antenna array performance from subarray measurements

    Get PDF
    Computer runs were used to determine the effect of mechanical distortions on array pattern performance. Subarray gain data, along with feed network insertion loss, and insertion phase data were combined with the analysis of Ruze on random errors to predict gain of a full array

    The Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope. The IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38micron with spectral resolutions, R \~90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the pre-launch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data reduction pipeline has been developed at the Spitzer Science Center.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 6 pages, 4 figure

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope

    No full text
    International audienceThe Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope. The IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38 mum with spectral resolutions, R=lambda/Deltalambda~90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the prelaunch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data-reduction pipeline has been developed at the Spitzer Science Center

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope

    No full text
    International audienceThe Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope. The IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38 mum with spectral resolutions, R=lambda/Deltalambda~90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the prelaunch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data-reduction pipeline has been developed at the Spitzer Science Center
    corecore