616 research outputs found
PENCALC: A program for penetrance estimation in autosomal dominant diseases
We present a computer program developed for estimating penetrance rates in autosomal dominant diseases by means of family kinship and phenotype information contained within the pedigrees. The program also determines the exact 95% credibility interval for the penetrance estimate. Both executable (PenCalc for Windows) and web versions (PenCalcWeb) of the software are available. The web version enables further calculations, such as heterozygosity probabilities and assessment of offspring risks for all individuals in the pedigrees. Both programs can be accessed and down-loaded freely at the home-page address http://www.ib.usp.br/~otto/software.htm
Influenza d virus infection in herd of cattle, Japan
Citation: Murakami, S., Endoh, M., Kobayashi, T., Takenaka-Uema, A., Chambers, J. K., Uchida, K., . . . Horimoto, T. (2016). Influenza d virus infection in herd of cattle, Japan. Emerging Infectious Diseases, 22(8), 1517-1519. doi:10.3201/eid2208.160362Although the provisionally named influenza D virus was first isolated as an influenza C–like virus from pigs with respiratory illness in Oklahoma in 2011 (1,2), epidemiologic analyses suggested that cattle are major reservoirs of this virus (3) and the virus is potentially involved in the bovine respiratory disease complex. The high rates of illness and death related to this disease in feedlot cattle are caused by multiple factors, including several viral and bacterial co-infections. Influenza D viruses were detected in cattle and pigs with respiratory diseases (and in some healthy cattle) in China (4), France (5), Italy (6), among other countries, indicating their wide global geographic distribution. Although the influenza D virus, like the human influenza C virus, is known to use 9-O-acetylated sialic acids as the cell receptor (2,7), its zoonotic potential is undefined because of limited research (1,8). We report influenza D virus infection in a herd of cattle in Japan
Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks
Prediction of one-dimensional protein structures such as secondary structures
and contact numbers is useful for the three-dimensional structure prediction
and important for the understanding of sequence-structure relationship. Here we
present a new machine-learning method, critical random networks (CRNs), for
predicting one-dimensional structures, and apply it, with position-specific
scoring matrices, to the prediction of secondary structures (SS), contact
numbers (CN), and residue-wise contact orders (RWCO). The present method
achieves, on average, accuracy of 77.8% for SS, correlation coefficients
of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS
prediction is comparable to other state-of-the-art methods, and that of the CN
prediction is a significant improvement over previous methods. We give a
detailed formulation of critical random networks-based prediction scheme, and
examine the context-dependence of prediction accuracies. In order to study the
nonlinear and multi-body effects, we compare the CRNs-based method with a
purely linear method based on position-specific scoring matrices. Although not
superior to the CRNs-based method, the surprisingly good accuracy achieved by
the linear method highlights the difficulty in extracting structural features
of higher order from amino acid sequence beyond that provided by the
position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for
publication in BIOPHYSIC
Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection
Copyright © 2012, American Society for Microbiology. All Rights ReservedThe influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.This work was supported by the Research Fund for the Control of Infectious Disease (project 09080892) of the Hong Kong Government, the Area of Excellence Scheme of the University Grants Committee (grant
AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, the RESPARI Pasteur Network
A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles
© 2012 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed.
Methodology/Findings: We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134.
Conclusions: We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 virusesThis work was supported by grants from the Research Fund for the Control of Infectious Diseases of Hong Kong (RFCID#08070972), the Area of
Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, and the RESPARI project of the Institut Pasteur International Network
SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters
The recent emergence of B.1.1.529, the Omicron varian
Recommended from our members
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010
Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia
- …