628 research outputs found

    Dynamic regulation of the endocannabinoid system: implications for analgesia

    Get PDF
    The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics

    Disrupted habenula function in major depression.

    Get PDF
    The habenula is a small, evolutionarily conserved brain structure that plays a central role in aversive processing and is hypothesised to be hyperactive in depression, contributing to the generation of symptoms such as anhedonia. However, habenula responses during aversive processing have yet to be reported in individuals with major depressive disorder (MDD). Unmedicated and currently depressed MDD patients (N=25, aged 18-52 years) and healthy volunteers (N=25, aged 19-52 years) completed a passive (Pavlovian) conditioning task with appetitive (monetary gain) and aversive (monetary loss and electric shock) outcomes during high-resolution functional magnetic resonance imaging; data were analysed using computational modelling. Arterial spin labelling was used to index resting-state perfusion and high-resolution anatomical images were used to assess habenula volume. In healthy volunteers, habenula activation increased as conditioned stimuli (CSs) became more strongly associated with electric shocks. This pattern was significantly different in MDD subjects, for whom habenula activation decreased significantly with increasing association between CSs and electric shocks. Individual differences in habenula volume were negatively associated with symptoms of anhedonia across both groups. MDD subjects exhibited abnormal negative task-related (phasic) habenula responses during primary aversive conditioning. The direction of this effect is opposite to that predicted by contemporary theoretical accounts of depression based on findings in animal models. We speculate that the negative habenula responses we observed may result in the loss of the capacity to actively avoid negative cues in MDD, which could lead to excessive negative focus

    Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Get PDF
    Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids. Conclusion In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.</p

    Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex

    Get PDF
    This is the second article in a series of three studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). Here, we report the number and distribution of NeuN-positive neurons within the C2, D2, and D3 TC projection columns in P27 rat somatosensory barrel cortex based on an exhaustive identification of 89 834 somata in a 1.15 mm3 volume of cortex. A single column contained 19 109 ± 444 neurons (17 560 ± 399 when normalized to a standard-size projection column). Neuron density differences along the vertical column axis delineated “cytoarchitectonic” layers. The resulting neuron numbers per layer in the average column were 63 ± 10 (L1), 2039 ± 524 (L2), 3735 ± 905 (L3), 4447 ± 439 (L4), 1737 ± 251 (L5A), 2235 ± 99 (L5B), 3786 ± 168 (L6A), and 1066 ± 170 (L6B). These data were then used to derive the layer-specific action potential (AP) output of a projection column. The estimates confirmed previous reports suggesting that the ensembles of spiny L4 and thick-tufted pyramidal neurons emit the major fraction of APs of a column. The number of APs evoked in a column by a sensory stimulus (principal whisker deflection) was estimated as 4441 within 100 ms post-stimulus

    Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex

    Get PDF
    This is the first article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). S1 receives 2 major types of TC inputs, lemiscal and paralemniscal. Lemiscal axons arise from the ventral posteromedial nucleus (VPM) of the thalamus, whereas paralemniscal fibers originate in the posteromedial nucleus (POm). While these 2 TC projections are largely complementary in L4, overlap in other cortical layers is still a matter of debate. VPM and POm axons were specifically labeled in the same rat by virus-mediated expression of different fluorescent proteins. We show that columnar and septal projection patterns are maintained throughout most of the cortical depth with a lower degree of separation in infragranular layers, where TC axons form bands along rows. Finally, we present anatomical dimensions of “TC projection domains” for a standard column in S1

    Control of somatosensory cortical processing by thalamic posterior medial nucleus: A new role of thalamus in cortical function

    Full text link
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane- anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.This work was supported by a grant from Ministerio de Economia y Competitividad (BFU2012- 36107

    Mesopontine rostromedial tegmental nucleus neurons projecting to the dorsal raphe and pedunculopontine tegmental nucleus: psychostimulant-elicited Fos expression and collateralization

    Get PDF
    The mesopontine rostromedial tegmental nucleus (RMTg) is a GABAergic structure in the ventral midbrain and rostral pons that, when activated, inhibits dopaminergic neurons in the ventral tegmental area and substantia nigra compacta. Additional strong outputs from the RMTg to the pedunculopontine tegmental nucleus pars dissipata, dorsal raphe nucleus, and the pontomedullary gigantocellular reticular formation were identified by anterograde tracing. RMTg neurons projecting to the ventral tegmental area express the immediate early gene Fos upon psychostimulant administration. The present study was undertaken to determine if neurons in the RMTg that project to the additional structures listed above also express Fos upon psychostimulant administration and, if so, whether single neurons in the RMTg project to more than one of these structures. We found that about 50% of RMTg neurons exhibiting retrograde labeling after injections of retrograde tracer in the dorsal raphe or pars dissipata of the pedunculopontine tegmental nucleus express Fos after acute methamphetamine exposure. Also, we observed that a significant number of RMTg neurons project both to the ventral tegmental area and one of these structures. In contrast, methamphetamine-elicited Fos expression was not observed in RMTg neurons labeled with retrograde tracer following injections into the pontomedullary reticular formation. The findings suggest that the RMTg is an integrative modulator of multiple rostrally projecting structures

    Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

    Get PDF
    Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development

    No Differential Regulation of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2) Binding in a Primate Model of Parkinson Disease

    Get PDF
    Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14 monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (rs = 0.83, rs = 0.80, respectively, both with n = 14, p<0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less (r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites strongly correlated with each other (r = 0.93, n = 14, p<0.0005). These similar changes in DAT and VMAT2 binding sites in the striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two sites at 2 months after MPTP infusion
    corecore