636 research outputs found

    Timing mirror structures observed by Cluster with a magnetosheath flow model

    Get PDF
    The evolution of structures associated with mirror modes during their flow in the Earth's magnetosheath is studied. The fact that the related magnetic fluctuations can take distinct shapes, from deep holes to high peaks, has been assessed in previous works on the observational, modeling and numerical points of view. In this paper we present an analytical model for the flow lines and velocity magnitude inside the magnetosheath. This model is used to interpret almost 10 years of Cluster observations of mirror structures: by back tracking each isolated observation to the shock, the "age", or flow time, of these structures is determined together with the geometry of the shock. Using this flow time the evolutionary path of the structures may be studied with respect to different quantities: the distance to mirror threshold, the amplitude of mirror fluctuations and the skewness of the magnetic amplitude distribution as a marker of the shape of the structures. These behaviours are confronted to numerical simulations which confirm the dynamical perspective gained from the association of the statistical analysis and the analytical model: magnetic peaks are mostly formed just behind the shock and are quickly overwhelmed by magnetic holes as the plasma conditions get more mirror stable. The amplitude of the fluctuations are found to saturate before the skewness vanishes, i.e. when both structures quantitatively balance each other, which typically occurs after a flow time of 100–200 s in the Earth's magnetosheath. Comparison with other astrophysical contexts is discussed

    The role of parametric instabilities in turbulence generation and proton heating: Hybrid simulations of parallel propagating Alfv\'en waves

    Full text link
    Large amplitude Alfv\'en waves tend to be unstable to parametric instabilities which result in a decay process of the initial wave into different daughter waves depending upon the amplitude of the fluctuations and the plasma beta. The propagation angle with respect to the mean magnetic field of the daughter waves plays an important role in determining the type of decay. In this paper, we revisit this problem by means of multi-dimensional hybrid simulations. In particular, we study the decay and the subsequent nonlinear evolution of large-amplitude Alfv\'en waves by investigating the saturation mechanism of the instability and its final nonlinear state reached for different wave amplitudes and plasma beta conditions. As opposed to one-dimensional simulations where the Decay instability is suppressed for increasing plasma beta values, we find that the decay process in multi-dimensions persists at large values of the plasma beta via the filamentation/magnetosonic decay instabilities. In general, the decay process acts as a trigger both to develop a perpendicular turbulent cascade and to enhance mean field-aligned wave-particle interactions. We find indeed that the saturated state is characterized by a turbulent plasma displaying a field-aligned beam at the Alfv\'en speed and increased temperatures that we ascribe to the Landau resonance and pitch angle scattering in phase space

    Testing Conditional Independence of Discrete Distributions

    Full text link
    We study the problem of testing \emph{conditional independence} for discrete distributions. Specifically, given samples from a discrete random variable (X,Y,Z)(X, Y, Z) on domain [ℓ1]×[ℓ2]×[n][\ell_1]\times[\ell_2] \times [n], we want to distinguish, with probability at least 2/32/3, between the case that XX and YY are conditionally independent given ZZ from the case that (X,Y,Z)(X, Y, Z) is ϵ\epsilon-far, in ℓ1\ell_1-distance, from every distribution that has this property. Conditional independence is a concept of central importance in probability and statistics with a range of applications in various scientific domains. As such, the statistical task of testing conditional independence has been extensively studied in various forms within the statistics and econometrics communities for nearly a century. Perhaps surprisingly, this problem has not been previously considered in the framework of distribution property testing and in particular no tester with sublinear sample complexity is known, even for the important special case that the domains of XX and YY are binary. The main algorithmic result of this work is the first conditional independence tester with {\em sublinear} sample complexity for discrete distributions over [ℓ1]×[ℓ2]×[n][\ell_1]\times[\ell_2] \times [n]. To complement our upper bounds, we prove information-theoretic lower bounds establishing that the sample complexity of our algorithm is optimal, up to constant factors, for a number of settings. Specifically, for the prototypical setting when ℓ1,ℓ2=O(1)\ell_1, \ell_2 = O(1), we show that the sample complexity of testing conditional independence (upper bound and matching lower bound) is \[ \Theta\left({\max\left(n^{1/2}/\epsilon^2,\min\left(n^{7/8}/\epsilon,n^{6/7}/\epsilon^{8/7}\right)\right)}\right)\,. \

    Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: from fluid to kinetic modeling

    Full text link
    The nonlinear evolution of collisionless plasmas is typically a multi-scale process where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic, Hall-MHD, two-fluid, hybrid kinetic and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligable in the nonlinear regime. This study show that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the colisionless regime

    The oblique firehose instability in a bi-kappa magnetized plasma

    Get PDF
    In this work, we derive a dispersion equation that describes the excitation of the oblique (or Alfv\'en) firehose instability in a plasma that contains both electron and ion species modelled by bi-kappa velocity distribution functions. The equation is obtained with the assumptions of low-frequency waves and moderate to large values of the parallel (respective to the ambient magnetic field) plasma beta parameter, but it is valid for any direction of propagation and for any value of the particle gyroradius (or Larmor radius). Considering values for the physical parameters typical to those found in the solar wind, some solutions of the dispersion equation, corresponding to the unstable mode, are presented. In order to implement the dispersion solver, several new mathematical properties of the special functions occurring in a kappa plasma are derived and included. The results presented here suggest that the superthermal characteristic of the distribution functions leads to reductions to both the maximum growth rate of the instability and of the spectral range of its occurrence

    A nonlinear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    Full text link
    Weakly collisional plasmas dynamically develop pressure anisotropies with respect to the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius \rho_i and much below the mean free path \lambda_{mfp}. They have growth rates of a fraction of the ion cyclotron frequency - much faster than either the global dynamics or local turbulence. The instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. Their nonlinear evolution drives pressure anisotropies towards marginal stability, controlled by the plasma beta \beta_i. Here this nonlinear evolution is worked out for the simplest analytically tractable example - the parallel firehose instability. In the nonlinear regime, both analytical theory and the numerical solution predict secular growth of magnetic fluctuations. They develop a k^{-3} spectrum, extending from scales somewhat larger than \rho_i to the maximum scale that grows secularly with time (~t^{1/2}); the relative pressure anisotropy (\pperp-\ppar)/\ppar tends to the marginal value -2/\beta_i. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the heat flux. The nonlinear evolution of the GTI also features secular growth of magnetic fluctuations, but the spectrum is eventually dominated by modes around the scale ~\rho_i l_T/\lambda_{mfp}, where l_T is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by the dynamics of galaxy cluster plasmas.Comment: 34 pages, replaced with the version published in MNRA
    • …
    corecore