374 research outputs found
Estimating within-household contact networks from egocentric data
Acute respiratory diseases are transmitted over networks of social contacts.
Large-scale simulation models are used to predict epidemic dynamics and
evaluate the impact of various interventions, but the contact behavior in these
models is based on simplistic and strong assumptions which are not informed by
survey data. These assumptions are also used for estimating transmission
measures such as the basic reproductive number and secondary attack rates.
Development of methodology to infer contact networks from survey data could
improve these models and estimation methods. We contribute to this area by
developing a model of within-household social contacts and using it to analyze
the Belgian POLYMOD data set, which contains detailed diaries of social
contacts in a 24-hour period. We model dependency in contact behavior through a
latent variable indicating which household members are at home. We estimate
age-specific probabilities of being at home and age-specific probabilities of
contact conditional on two members being at home. Our results differ from the
standard random mixing assumption. In addition, we find that the probability
that all members contact each other on a given day is fairly low: 0.49 for
households with two 0--5 year olds and two 19--35 year olds, and 0.36 for
households with two 12--18 year olds and two 36+ year olds. We find higher
contact rates in households with 2--3 members, helping explain the higher
influenza secondary attack rates found in households of this size.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS474 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Estimating within-school contact networks to understand influenza transmission
Many epidemic models approximate social contact behavior by assuming random
mixing within mixing groups (e.g., homes, schools and workplaces). The effect
of more realistic social network structure on estimates of epidemic parameters
is an open area of exploration. We develop a detailed statistical model to
estimate the social contact network within a high school using friendship
network data and a survey of contact behavior. Our contact network model
includes classroom structure, longer durations of contacts to friends than
nonfriends and more frequent contacts with friends, based on reports in the
contact survey. We performed simulation studies to explore which network
structures are relevant to influenza transmission. These studies yield two key
findings. First, we found that the friendship network structure important to
the transmission process can be adequately represented by a dyad-independent
exponential random graph model (ERGM). This means that individual-level sampled
data is sufficient to characterize the entire friendship network. Second, we
found that contact behavior was adequately represented by a static rather than
dynamic contact network.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS505 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A statnet Tutorial
The statnet suite of R packages contains a wide range of functionality for the statistical analysis of social networks, including the implementation of exponential-family random graph (ERG) models. In this paper we illustrate some of the functionality of statnet through a tutorial analysis of a friendship network of 1,461 adolescents.
Differentially Private Exponential Random Graphs
We propose methods to release and analyze synthetic graphs in order to
protect privacy of individual relationships captured by the social network.
Proposed techniques aim at fitting and estimating a wide class of exponential
random graph models (ERGMs) in a differentially private manner, and thus offer
rigorous privacy guarantees. More specifically, we use the randomized response
mechanism to release networks under -edge differential privacy. To
maintain utility for statistical inference, treating the original graph as
missing, we propose a way to use likelihood based inference and Markov chain
Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks.
We demonstrate the usefulness of the proposed techniques on a real data
example.Comment: minor edit
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks
We describe some of the capabilities of the ergm package and the statistical theory underlying it. This package contains tools for accomplishing three important, and inter-related, tasks involving exponential-family random graph models (ERGMs): estimation, simulation, and goodness of fit. More precisely, ergm has the capability of approximating a maximum likelihood estimator for an ERGM given a network data set; simulating new network data sets from a fitted ERGM using Markov chain Monte Carlo; and assessing how well a fitted ERGM does at capturing characteristics of a particular network data set.
statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data
statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM). The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC) algorithm. The coding is optimized for speed and robustness.
Condition numbers and scale free graphs
In this work we study the condition number of the least square matrix
corresponding to scale free networks. We compute a theoretical lower bound of
the condition number which proves that they are ill conditioned. Also, we
analyze several matrices from networks generated with the linear preferential
attachment model showing that it is very difficult to compute the power law
exponent by the least square method due to the severe lost of accuracy expected
from the corresponding condition numbers.Comment: Submitted to EP
Characterizing Ranked Chinese Syllable-to-Character Mapping Spectrum: A Bridge Between the Spoken and Written Chinese Language
One important aspect of the relationship between spoken and written Chinese
is the ranked syllable-to-character mapping spectrum, which is the ranked list
of syllables by the number of characters that map to the syllable. Previously,
this spectrum is analyzed for more than 400 syllables without distinguishing
the four intonations. In the current study, the spectrum with 1280 toned
syllables is analyzed by logarithmic function, Beta rank function, and
piecewise logarithmic function. Out of the three fitting functions, the
two-piece logarithmic function fits the data the best, both by the smallest sum
of squared errors (SSE) and by the lowest Akaike information criterion (AIC)
value. The Beta rank function is the close second. By sampling from a Poisson
distribution whose parameter value is chosen from the observed data, we
empirically estimate the -value for testing the
two-piece-logarithmic-function being better than the Beta rank function
hypothesis, to be 0.16. For practical purposes, the piecewise logarithmic
function and the Beta rank function can be considered a tie.Comment: 15 pages, 4 figure
- …