374 research outputs found

    Estimating within-household contact networks from egocentric data

    Full text link
    Acute respiratory diseases are transmitted over networks of social contacts. Large-scale simulation models are used to predict epidemic dynamics and evaluate the impact of various interventions, but the contact behavior in these models is based on simplistic and strong assumptions which are not informed by survey data. These assumptions are also used for estimating transmission measures such as the basic reproductive number and secondary attack rates. Development of methodology to infer contact networks from survey data could improve these models and estimation methods. We contribute to this area by developing a model of within-household social contacts and using it to analyze the Belgian POLYMOD data set, which contains detailed diaries of social contacts in a 24-hour period. We model dependency in contact behavior through a latent variable indicating which household members are at home. We estimate age-specific probabilities of being at home and age-specific probabilities of contact conditional on two members being at home. Our results differ from the standard random mixing assumption. In addition, we find that the probability that all members contact each other on a given day is fairly low: 0.49 for households with two 0--5 year olds and two 19--35 year olds, and 0.36 for households with two 12--18 year olds and two 36+ year olds. We find higher contact rates in households with 2--3 members, helping explain the higher influenza secondary attack rates found in households of this size.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS474 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating within-school contact networks to understand influenza transmission

    Get PDF
    Many epidemic models approximate social contact behavior by assuming random mixing within mixing groups (e.g., homes, schools and workplaces). The effect of more realistic social network structure on estimates of epidemic parameters is an open area of exploration. We develop a detailed statistical model to estimate the social contact network within a high school using friendship network data and a survey of contact behavior. Our contact network model includes classroom structure, longer durations of contacts to friends than nonfriends and more frequent contacts with friends, based on reports in the contact survey. We performed simulation studies to explore which network structures are relevant to influenza transmission. These studies yield two key findings. First, we found that the friendship network structure important to the transmission process can be adequately represented by a dyad-independent exponential random graph model (ERGM). This means that individual-level sampled data is sufficient to characterize the entire friendship network. Second, we found that contact behavior was adequately represented by a static rather than dynamic contact network.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS505 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A statnet Tutorial

    Get PDF
    The statnet suite of R packages contains a wide range of functionality for the statistical analysis of social networks, including the implementation of exponential-family random graph (ERG) models. In this paper we illustrate some of the functionality of statnet through a tutorial analysis of a friendship network of 1,461 adolescents.

    Differentially Private Exponential Random Graphs

    Full text link
    We propose methods to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network. Proposed techniques aim at fitting and estimating a wide class of exponential random graph models (ERGMs) in a differentially private manner, and thus offer rigorous privacy guarantees. More specifically, we use the randomized response mechanism to release networks under ϵ\epsilon-edge differential privacy. To maintain utility for statistical inference, treating the original graph as missing, we propose a way to use likelihood based inference and Markov chain Monte Carlo (MCMC) techniques to fit ERGMs to the produced synthetic networks. We demonstrate the usefulness of the proposed techniques on a real data example.Comment: minor edit

    ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks

    Get PDF
    We describe some of the capabilities of the ergm package and the statistical theory underlying it. This package contains tools for accomplishing three important, and inter-related, tasks involving exponential-family random graph models (ERGMs): estimation, simulation, and goodness of fit. More precisely, ergm has the capability of approximating a maximum likelihood estimator for an ERGM given a network data set; simulating new network data sets from a fitted ERGM using Markov chain Monte Carlo; and assessing how well a fitted ERGM does at capturing characteristics of a particular network data set.

    statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data

    Get PDF
    statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM). The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC) algorithm. The coding is optimized for speed and robustness.

    Condition numbers and scale free graphs

    Full text link
    In this work we study the condition number of the least square matrix corresponding to scale free networks. We compute a theoretical lower bound of the condition number which proves that they are ill conditioned. Also, we analyze several matrices from networks generated with the linear preferential attachment model showing that it is very difficult to compute the power law exponent by the least square method due to the severe lost of accuracy expected from the corresponding condition numbers.Comment: Submitted to EP

    Characterizing Ranked Chinese Syllable-to-Character Mapping Spectrum: A Bridge Between the Spoken and Written Chinese Language

    Full text link
    One important aspect of the relationship between spoken and written Chinese is the ranked syllable-to-character mapping spectrum, which is the ranked list of syllables by the number of characters that map to the syllable. Previously, this spectrum is analyzed for more than 400 syllables without distinguishing the four intonations. In the current study, the spectrum with 1280 toned syllables is analyzed by logarithmic function, Beta rank function, and piecewise logarithmic function. Out of the three fitting functions, the two-piece logarithmic function fits the data the best, both by the smallest sum of squared errors (SSE) and by the lowest Akaike information criterion (AIC) value. The Beta rank function is the close second. By sampling from a Poisson distribution whose parameter value is chosen from the observed data, we empirically estimate the pp-value for testing the two-piece-logarithmic-function being better than the Beta rank function hypothesis, to be 0.16. For practical purposes, the piecewise logarithmic function and the Beta rank function can be considered a tie.Comment: 15 pages, 4 figure
    corecore