330 research outputs found
TMFunction: database for functional residues in membrane proteins
We have developed the database TMFunction, which is a collection of more than 2900 experimentally observed functional residues in membrane proteins. Each entry includes the numerical values for the parameters IC50 (measure of the effectiveness of a compound in inhibiting biological function), Vmax (maximal velocity of transport), relative activity of mutants with respect to wild-type protein, binding affinity, dissociation constant, etc., which are important for understanding the sequenceâstructureâfunction relationship of membrane proteins. In addition, we have provided information about name and source of the protein, Uniprot and Protein Data Bank codes, mutational and literature information. Furthermore, TMFunction is linked to related databases and other resources. We have set up a web interface with different search and display options so that users have the ability to get the data in several ways. TMFunction is freely available at http://tmbeta-genome.cbrc.jp/TMFunction/
NETASA: neural network based prediction of solvent accessibility
Motivation: Prediction of the tertiary structure of a protein from its amino acid sequence is one of the most important problems in molecular biology. The successful prediction of solvent accessibility will be very helpful to achieve this goal. In the present work, we have implemented a server, NETASA for predicting solvent accessibility of amino acids using our newly optimized neural network algorithm. Several new features in the neural network architecture and training method have been introduced, and the network learns faster to provide accuracy values, which are comparable or better than other methods of ASA prediction. Results: Prediction in two and three state classification systems with several thresholds are provided. Our prediction method achieved the accuracy level upto 90% for training and 88% for test data sets. Three state prediction results provide a maximum 65% accuracy for training and 63% for the test data. Applicability of neural networks for ASA prediction has been confirmed with a larger data set and wider range of state thresholds. Salient differences between a linear and exponential network for ASA prediction have been analysed
PINT: Proteinâprotein Interactions Thermodynamic Database
The first release of Proteinâprotein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of proteinâprotein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available a
Application of amino acid occurrence for discriminating different folding types of globular proteins
<p>Abstract</p> <p>Background</p> <p>Predicting the three-dimensional structure of a protein from its amino acid sequence is a long-standing goal in computational/molecular biology. The discrimination of different structural classes and folding types are intermediate steps in protein structure prediction.</p> <p>Results</p> <p>In this work, we have proposed a method based on linear discriminant analysis (LDA) for discriminating 30 different folding types of globular proteins using amino acid occurrence. Our method was tested with a non-redundant set of 1612 proteins and it discriminated them with the accuracy of 38%, which is comparable to or better than other methods in the literature. A web server has been developed for discriminating the folding type of a query protein from its amino acid sequence and it is available at http://granular.com/PROLDA/.</p> <p>Conclusion</p> <p>Amino acid occurrence has been successfully used to discriminate different folding types of globular proteins. The discrimination accuracy obtained with amino acid occurrence is better than that obtained with amino acid composition and/or amino acid properties. In addition, the method is very fast to obtain the results.</p
TMBETA-NET: discrimination and prediction of membrane spanning β-strands in outer membrane proteins
We have developed a web-server, TMBETA-NET for discriminating outer membrane proteins and predicting their membrane spanning β-strand segments. The amino acid compositions of globular and outer membrane proteins have been systematically analyzed and a statistical method has been proposed for discriminating outer membrane proteins. The prediction of membrane spanning segments is mainly based on feed forward neural network and refined with β-strand length. Our program takes the amino acid sequence as input and displays the type of the protein along with membrane-spanning β-strand segments as a stretch of highlighted amino acid residues. Further, the probability of residues to be in transmembrane β-strand has been provided with a coloring scheme. We observed that outer membrane proteins were discriminated with an accuracy of 89% and their membrane spanning β-strand segments at an accuracy of 73% just from amino acid sequence information. The prediction server is available at
CUPSAT: prediction of protein stability upon point mutations
CUPSAT (Cologne University Protein Stability Analysis Tool) is a web tool to analyse and predict protein stability changes upon point mutations (single amino acid mutations). This program uses structural environment specific atom potentials and torsion angle potentials to predict ÎÎG, the difference in free energy of unfolding between wild-type and mutant proteins. It requires the protein structure in Protein Data Bank format and the location of the residue to be mutated. The output consists information about mutation site, its structural features (solvent accessibility, secondary structure and torsion angles), and comprehensive information about changes in protein stability for 19 possible substitutions of a specific amino acid mutation. Additionally, it also analyses the ability of the mutated amino acids to adapt the observed torsion angles. Results were tested on 1538 mutations from thermal denaturation and 1603 mutations from chemical denaturation experiments. Several validation tests (split-sample, jack-knife and k-fold) were carried out to ensure the reliability, accuracy and transferability of the prediction method that gives >80% prediction accuracy for most of these validation tests. Thus, the program serves as a valuable tool for the analysis of protein design and stability. The tool is accessible from the link
The role of stabilization centers in protein thermal stability
AbstractThe definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilization of proteins
Identification of DNA-binding proteins using support vector machines and evolutionary profiles
<p>Abstract</p> <p>Background</p> <p>Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we developed various SVM modules for predicting DNA-binding domains and proteins. All models were trained and tested on multiple datasets of non-redundant proteins.</p> <p>Results</p> <p>SVM models have been developed on DNAaset, which consists of 1153 DNA-binding and equal number of non DNA-binding proteins, and achieved the maximum accuracy of 72.42% and 71.59% using amino acid and dipeptide compositions, respectively. The performance of SVM model improved from 72.42% to 74.22%, when evolutionary information in form of PSSM profiles was used as input instead of amino acid composition. In addition, SVM models have been developed on DNAset, which consists of 146 DNA-binding and 250 non-binding chains/domains, and achieved the maximum accuracy of 79.80% and 86.62% using amino acid composition and PSSM profiles. The SVM models developed in this study perform better than existing methods on a blind dataset.</p> <p>Conclusion</p> <p>A highly accurate method has been developed for predicting DNA-binding proteins using SVM and PSSM profiles. This is the first study in which evolutionary information in form of PSSM profiles has been used successfully for predicting DNA-binding proteins. A web-server DNAbinder has been developed for identifying DNA-binding proteins and domains from query amino acid sequences <url>http://www.imtech.res.in/raghava/dnabinder/</url>.</p
- âŚ