1,104 research outputs found

    Decay and storage of multiparticle entangled states of atoms in collective thermostat

    Get PDF
    We derive a master equation describing the collective decay of two-level atoms inside a single mode cavity in the dispersive limit. By considering atomic decay in the collective thermostat, we found a decoherence-free subspace of the multiparticle entangled states of the W-like class. We present a scheme for writing and storing these states in collective thermostat

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex

    Quantum teleportation of entangled coherent states

    Get PDF
    We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled coherent states with the successful probability 1/2. The scheme is based on only linear optical devices such as beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels described by multipartite maximally entangled coherent states are readily made by the beam splitters and phase shifters.Comment: 4 pages, no figure

    Field-induced insulating states in a graphene superlattice

    Get PDF
    We report on high-field magnetotransport (B up to 35 T) on a gated superlattice based on single-layer graphene aligned on top of hexagonal boron nitride. The large-period moir\'e modulation (15 nm) enables us to access the Hofstadter spectrum in the vicinity of and above one flux quantum per superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in addition to the spin-valley antiferromagnet at nu = 0, two insulating states developing in positive and negative effective magnetic fields from the main nu = 1 and nu = -2 quantum Hall states respectively. We investigate the field dependence of the energy gaps associated with these insulating states, which we quantify from the temperature-activated peak resistance. Referring to a simple model of local Landau quantization of third generation Dirac fermions arising at Phi/Phi_0 = 1, we describe the different microscopic origins of the insulating states and experimentally determine the energy-momentum dispersion of the emergent gapped Dirac quasi-particles
    corecore