18,704 research outputs found
Overview of NASA supported Stirling thermodynamic loss research
NASA is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooling and heat pump applications. The research results are reviewed. Much was learned about oscillating flow hydrodynamics, including laminar/turbulent transition, and tabulated data was documented for further analysis. Now, with a better understanding of the oscillating flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders
RE-1000 free-piston Stirling engine hydraulic output system description
The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid
Off-shell effects on the interaction of Nambu-Goldstone bosons and mesons
The Bethe-Salpeter equation in unitarized chiral perturbation theory is
usually solved with the so-called on-shell approximation. The underlying
argument is that the off-shell effects can be absorbed by the corresponding
coupling constants and physical masses, which has been corroborated by the
success of unitarized chiral perturbation theory in describing a variety of
physical phenomena. Such an approximation needs to be scrutinized when applied
to study the light-quark mass evolution of physical observables, as routinely
performed nowadays. In the present work, we propose to solve the Bethe-Salpeter
equation with the full off-shell terms of the chiral potentials and apply this
formalism to the description of the latest lattice QCD (LQCD) data on
the scattering lengths of Nambu-Goldstone bosons off mesons. It is shown
that the LQCD data can be better described in this formalism than in the widely
used on-shell approximation. On the other hand, no qualitative difference
between the on-shell and off-shell approaches is observed for the light-quark
mass evolution of the scattering lengths, given the limited LQCD data and their
relatively large uncertainties. We also show that the light-quark mass
dependence of the remains essentially the same in both
approaches.Comment: An appendix added to illustrate how the Bethe-Salpeter equation with
a full-off shell potential is solved. To appear in Physical Review
Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data
A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions
Properties of the ground-state baryons in chiral perturbation theory
We review recent progress in the understanding of low-energy baryon structure
by means of chiral perturbation theory. In particular, we discuss the
application of this formalism to the description of various properties such as
the baryon-octet magnetic moments, the electromagnetic structure of decuplet
resonances and the hyperon vector coupling . Moreover, we present the
results on the chiral extrapolation of recent lattice QCD results on the
lowest-lying baryon masses and we predict the corresponding baryonic
sigma-terms.Comment: 6 pages; shortened version to appear in the proceedings of QCD1
Study of Radiative Leptonic D Meson Decays
We study the radiative leptonic meson decays of D^+_{(s)}\to
\l^+\nu_{\l}\gamma (\l=e,\mu,\tau), and D^0\to
\l^+\l^-\gamma () within the light front quark model. In the standard
model, we find that the decay branching ratios of , and
are (), (), and
(), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and
are and ,
respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published
in Mod. Phys. Lett.
Recommended from our members
Nox2 dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging
Microglia express constitutively a Nox2 enzyme that is involved in neuroinflammation by the
generation of reactive oxygen species (ROS). Amyloid β (Aβ) plays a crucial role in Alzheimer’s disease.
However, the mechanism of Aβ-induced microglial dysfunction and redox-regulation of microgliosis
in aging remains unclear. In this study, we examined Nox2-derived ROS in mediating microglial
response to Aβ peptide 1–42 (Aβ42) stimulation in vitro, in aging-associated microgliosis in vivo and in
post-mortem human samples. Compared to controls, Aβ42 markedly induced BV2 cell ROS production,
Nox2 expression, p47phox and ERK1/2 phosphorylation, cell proliferation and IL-1β secretion. All
these changes could be inhibited to the control levels in the presence of Nox2 inhibitor or superoxide
scavenger. Compared to young (3–4 months) controls, midbrain tissues from wild-type aging mice (20–
22 months) had significantly higher levels of Nox2-derived ROS production, Aβ deposition, microgliosis
and IL-1β production. However, these aging-related changes were reduced or absent in Nox2 knockout
aging mice. Clinical significance of aging-associated Nox2 activation, microgliosis and IL-1β production
was investigated using post-mortem midbrain tissues of humans at young (25–38 years) and old age
(61–85 years). In conclusion, Nox2-dependent redox-signalling is crucial in microglial response to Aβ42
stimulation and in aging-associated microgliosis and brain inflammation
Scattering lengths of Nambu-Goldstone bosons off mesons and dynamically generated heavy-light mesons
Recent lattice QCD simulations of the scattering lengths of Nambu-Goldstone
bosons off the mesons are studied using unitary chiral perturbation theory.
We show that the Lattice QCD data are better described in the covariant
formulation than in the heavy-meson formulation. The can be
dynamically generated from the coupled-channels interaction without
\textit{a priori} assumption of its existence. A new renormalization scheme is
proposed which manifestly satisfies chiral power counting rules and has
well-defined behavior in the infinite heavy-quark mass limit. Using this scheme
we predict the heavy-quark spin and flavor symmetry counterparts of the
.Comment: 22 pages, 5 figures; to appear in Physical Review
Role of the (1535) in the and reactions
We study the and
reactions with a unitary chiral approach. We find that the unitary chiral
approach, which generates the dynamically, can describe the data
reasonably well, particularly the ratio of the integrated cross sections. This
study provides further support for the unitary chiral description of the
. We also discuss some subtle differences between the coupling
constants determined from the unitary chiral approach and those determined from
phenomenological studies.Comment: version to appear in PRC; certain features of the approach clarifie
- …
