138 research outputs found

    Harnessing the Synergy of Fe and Co with Carbon Nanofibers for Enhanced CO

    Get PDF
    Amid growing concerns about climate change and energy sustainability, the need to create potent catalysts for the sequestration and conversion of CO2 to value-added chemicals is more critical than ever. This work describes the successful synthesis and profound potential of high-performance nanofiber catalysts, integrating earth-abundant iron (Fe) and cobalt (Co) as well as their alloy counterpart, FeCo, achieved through electrospinning and judicious thermal treatments. Systematic characterization using an array of advanced techniques, including SEM, TGA-DSC, ICP-MS, XRF, EDS, FTIR–ATR, XRD, and Raman spectroscopy, confirmed the integration and homogeneous distribution of Fe/Co elements in nanofibers and provided insights into their catalytic nuance. Impressively, the bimetallic FeCo nanofiber catalyst, thermally treated at 1050 °C, set a benchmark with an unparalleled CO2 conversion rate of 46.47% at atmospheric pressure and a consistent performance over a 55 h testing period at 500 °C. Additionally, this catalyst exhibited prowess in producing high-value hydrocarbons, comprising 8.01% of total products and a significant 31.37% of C2+ species. Our work offers a comprehensive and layered understanding of nanofiber catalysts, delving into their transformations, compositions, and structures under different calcination temperatures. The central themes of metal–carbon interactions, the potential advantages of bimetallic synergies, and the importance of structural defects all converge to define the catalytic performance of these nanofibers. These revelations not only deepen our understanding but also set the stage for future endeavors in designing advanced nanofiber catalysts with bespoke properties tailored for specific applications

    Assessment and comparison of four lab made tris-base extenders for preservation of Labrador retriever dog semen at 4ºC

    Get PDF
    131-139The present study was aimed to develop a most effective extender for long term storage of Labrador dog semen at 4oC. Tris-citric acid-fructose was supplemented with egg yolk (TEY), egg yolk plasma (TEYP), low density lipoproteins (TLDL) and coconut water (TCW) @10, 15 and 20; 10, 15 and 20; 11-15; and 25, 50 and 75 percent, respectively. Extended semen was stored at 4oC and analyzed for sperm attributes and lipid peroxidation. Values for motility, viability and plasma membrane integrity remained significantly (p < 0.05) higher in 15% TEY, 15% TEYP, 13% TLDL and 25%/50% TCW from 0 hr to 72 hrs of storage. It indicated superiority of 15% TEY, 15% TEYP, 13% TLDL and 25% /50% TCW over other concentrations for storage of Labrador dog semen at 4oC. A significant (p < 0.05) decline in motility, viability and membrane integrity was observed from 0-72 hrs of preservation in all extenders, but sperm attributes were still >50% at 72 hrs of preservation. Decline was comparatively less in 15% TEY, 15% TEYP, 25%/50% TCW and 13% TLDL compared to other concentrations. Values for acrosome integrity also differ significantly (p > 0.05) among different concentrations of extenders except TEY. Lipid peroxidation did not vary among different extenders except TEY. In conclusion, both 15% TEY and 15% TEYP were better than 13% TLDL and 25% TCW. TEY extender may be substituted with TEYP for preservation of dog semen at 4°C and further interventions may improve TLDL and TCW extenders

    A Metabolomic Endotype of Bioenergetic Dysfunction Predicts Mortality in Critically Ill Patients with Acute Respiratory Failure

    Get PDF
    Acute respiratory failure (ARF) requiring mechanical ventilation, a complicating factor in sepsis and other disorders, is associated with high morbidity and mortality. Despite its severity and prevalence, treatment options are limited. In light of accumulating evidence that mitochondrial abnormalities are common in ARF, here we applied broad spectrum quantitative and semiquantitative metabolomic analyses of serum from ARF patients to detect bioenergetic dysfunction and determine its association with survival. Plasma samples from surviving and non-surviving patients (N = 15/group) were taken at day 1 and day 3 after admission to the medical intensive care unit and, in survivors, at hospital discharge. Significant differences between survivors and non-survivors (ANOVA, 5% FDR) include bioenergetically relevant intermediates of redox cofactors nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP), increased acyl-carnitines, bile acids, and decreased acyl-glycerophosphocholines. Many metabolites associated with poor outcomes are substrates of NAD(P)-dependent enzymatic processes, while alterations in NAD cofactors rely on bioavailability of dietary B-vitamins thiamine, riboflavin and pyridoxine. Changes in the efficiency of the nicotinamide-derived cofactors\u27 biosynthetic pathways also associate with alterations in glutathione-dependent drug metabolism characterized by substantial differences observed in the acetaminophen metabolome. Based on these findings, a four-feature model developed with semi-quantitative and quantitative metabolomic results predicted patient outcomes with high accuracy (AUROC = 0.91). Collectively, this metabolomic endotype points to a close association between mitochondrial and bioenergetic dysfunction and mortality in human ARF, thus pointing to new pharmacologic targets to reduce mortality in this condition

    Simultaneous Analysis of Multiple Mycobacterium tuberculosis Knockdown Mutants In Vitro and In Vivo

    Get PDF
    Mycobacterium tuberculosis (Mtb) represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags) and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL), the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen was cleared from the lungs of most mice

    Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression

    Get PDF
    In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Prokayrotic Ubiquitin-Like Protein (Pup) Proteome of Mycobacterium tuberculosis

    Get PDF
    Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its “pupylome”. Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtb response regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation

    VapC Toxins from Mycobacterium tuberculosis Are Ribonucleases that Differentially Inhibit Growth and Are Neutralized by Cognate VapB Antitoxins

    Get PDF
    The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as ‘non-toxic’. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of ‘non-toxic’ VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617 – VapC proteins with similarity to Rv0549c and Rv3320c, respectively – these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism
    corecore