313 research outputs found

    ICTV virus taxonomy profile: Bromoviridae

    Get PDF
    Bromoviridae is a family of plant viruses with tri-segmented, positive-sense, single-stranded RNA genomes of about 8 kb in total. Genomic RNAs are packaged in separate virions that may also contain subgenomic, defective or satellite RNAs. Virions are variable in morphology (spherical or bacilliform) and are transmitted between hosts mechanically, in/on the pollen and non-persistently by insect vectors. Members of the family are responsible for major disease epidemics in fruit, vegetable and fodder crops such as tomato, cucurbits, bananas, fruit trees and alfalfa. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bromoviridae, which is available at www.ictv.global/report/bromoviridae

    One year after on Tyrrhenian coasts: The ban of cotton buds does not reduce their dominance in beach litter composition

    Get PDF
    In January 2019, Italy banned the sale of plastic cotton buds, which is one of the most abundant litter items entering the sea and then washing ashore. However, since the ban came into force, no studies have been carried out to assess whether the measure has actually led to the reduction of plastic cotton buds accumulating on Italian coasts. Here we aim at evaluating the effectiveness of the ban in reducing the amount of cotton buds reaching sandy beaches of the Tyrrhenian coast. Specifically, we monitored the accumulation of beach litter for one year since the ban came into force. By surveying eight coastal sites from winter 2019 to winter 2020, we collected a total of 52,824 items mostly constituted by plastic debris (97.6%). We found that cotton buds were the most abundant item (42.3% of total litter), followed by plastic (28.5%) and polystyrene (5.43%) fragments. Our preliminary assessment suggests that the ban has so far not led to a sensible reduction in the amount of cotton buds entering the marine ecosystem. This was to be expected since implementation strategies are still lacking (i.e. no economic sanctions can be imposed in case of non-compliance) and bans are differently implemented among countries facing the Mediterranean Sea, calling for law enforcement and implementation at the national and international levels

    Airborne Microalgae: Insights, Opportunities and Challenges

    Get PDF
    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment and possibly influence their deposition rates. This minireview presents a summary of these studies and traces the possible route, step-by-step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and environment, and the state-of-the-art techniques to detect and model airborne microalgae dispersal. More detailed studies on microalgae atmospheric-cycle, including for instance ice nucleation activity and transport simulations, are crucial for improving our understanding of microalgae ecology, identifying their interactions with the environment and preventing unwanted sanitary events or invasions

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins

    Get PDF
    Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology
    corecore