339 research outputs found

    Spatial separation of large dynamical blue shift and harmonic generation

    Get PDF
    We study the temporal and spatial dynamics of the large amplitude and frequency modulation that can be induced in an intense, few cycle laser pulse as it propagates through a rapidly ionizing gas. Our calculations include both single atom and macroscopic interactions between the non-linear medium and the laser field. We analyze the harmonic generation by such pulses and show that it is spatially separated from the ionization dynamics which produce a large dynamical blue shift of the laser pulse. This means that small changes in the initial laser focusing conditions can lead to large differences in the laser frequency modulation, even though the generated harmonic spectrum remains essentially unchanged.Comment: 4 pages, 5 figures. Under revisio

    Spin-isospin nuclear response using the existing microscopic Skyrme functionals

    Full text link
    Our paper aims at providing an answer to the question whether one can reliably describe the properties of the most important spin-isospin nuclear excitations, by using the available non-relativistic Skyrme energy functionals. Our method, which has been introduced in a previous publication devoted to the Isobaric Analog states, is the self-consistent Quasiparticle Random Phase Approximation (QRPA). The inclusion of pairing is instrumental for describing a number of experimentally measured spherical systems which are characterized by open shells. We discuss the effect of isoscalar and isovector pairing correlations. Based on the results for the Gamow-Teller resonance in 90^{90}Zr, in 208^{208}Pb and in few Sn isotopes, we draw definite conclusions on the performance of different Skyrme parametrizations, and we suggest improvements for future fits. We also use the spin-dipole resonance as a benchmark of our statements.Comment: Submitted to Phys. Rev.

    Ab initio calculations of the linear and nonlinear susceptibilities of N2, O2, and air in midinfrared laser pulses

    Get PDF
    We present first-principles calculations of the linear and nonlinear susceptibilities of N2, O2, and air in the midinfrared (MIR) wavelength regime from 1-4ÎĽm. We extract the frequency-dependent susceptibilities from the full time-dependent dipole moment that is calculated using time-dependent density functional theory. We find good agreement with curves derived from experimental results for the linear susceptibility and with measurements for the nonlinear susceptibility up to 2.4ÎĽm. We also find that the susceptibilities are insensitive to the laser intensity even in the strong field regime up to 5Ă—1013W/cm2. Our results will allow accurate calculations of the long-distance propagation of intense midinfrared laser pulses in air

    Attosecond pulse shaping around a Cooper minimum

    Full text link
    High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.Comment: 5 pages, 5 figure

    VUV frequency combs from below-threshold harmonics

    Get PDF
    Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (~100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum ultraviolet (VUV). This advance necessitates unifying optical frequency comb technology with strong-field atomic physics. While strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for VUV frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here we present a new and quantitative study of the harmonics 7-13 generated below and near the ionization threshold in xenon gas. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a VUV frequency comb generated through below threshold harmonics. We find that under reasonable experimental conditions temporal coherence is maintained. As evidence we present the first explicit VUV frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl

    Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra

    Get PDF
    We study the influence of phase matching on interference minima in high harmonic spectra. We concentrate on structures in atoms due to interference of different angular momentum channels during recombination. We use the Cooper minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure 2d harmonic spectra in argon as a function of wavelength and angular divergence. While we identify a clear CM in the spectrum when the target gas jet is placed after the laser focus, we find that the appearance of the CM varies with angular divergence and can even be completely washed out when the gas jet is placed closer to the focus. We also show that the argon CM appears at different wavelengths in harmonic and photo-absorption spectra measured under conditions independent of any wavelength calibration. We model the experiment with a simulation based on coupled solutions of the time-dependent Schr\"odinger equation and the Maxwell wave equation, including both the single atom response and macroscopic effects of propagation. The single atom calculations confirm that the ground state of argon can be represented by its field free pp symmetry, despite the strong laser field used in high harmonic generation. Because of this, the CM structure in the harmonic spectrum can be described as the interference of continuum ss and dd channels, whose relative phase jumps by π\pi at the CM energy, resulting in a minimum shifted from the photoionization result. We also show that the full calculations reproduce the dependence of the CM on the macroscopic conditions. We calculate simple phase matching factors as a function of harmonic order and explain our experimental and theoretical observation in terms of the effect of phase matching on the shape of the harmonic spectrum. Phase matching must be taken into account to fully understand spectral features related to HHG spectroscopy

    Spectral signature of short attosecond pulse trains

    Full text link
    We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800nm laser field and a fraction (less than 10%) of its second harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to interferences between multiple pulses in the train. The position of these peaks varies with the CEO and their number is directly related to the number of pulses in the train. An analytical model, as well as numerical simulations, support our interpretation

    Escape and Spreading Properties of Charge-Exchange Resonances in Bi 208

    Get PDF
    The properties of charge-exchange excitations of 208{}^ {208}Pb with ΔL=0\Delta L = 0, i.e., the isobaric analog and Gamow-Teller resonances, are studied within a self-consistent model making use of an effective force of the Skyrme type. The well-known isobaric analog case is used to assess the reliability of the model. The calculated properties of the Gamow-Teller resonance are compared with recent experimental measurements with the aim of better understanding the microscopic structure of this mode.Comment: 26 pages including references, figure captions and tables. Figures are available upon request at [email protected] (decnet 32858::COLO). Preprint code: IPNO/TH 94-2

    Wave packet retrieval by multi-photon quantum beat spectroscopy in helium

    Get PDF
    We show that we can probe the components of an attosecond bound electron wave packet by mapping the quantum beat signal produced by a synchronized delayed few-cycle infrared pulse into the continuum. In addition, spectrally overlapping peaks that result from one-, two- or three-photon processes from more or less deeply bound states can in principle be interferometrically resolved with high resolution
    • …
    corecore