49,526 research outputs found
Irreversible processes and the accelerated-decelerated phases of the Universe
A model for the Universe is proposed where it is considered as a mixture of
scalar and matter fields. The particle production is due to an irreversible
transfer of energy from the gravitational field to the matter field and
represented by a non-equilibrium pressure. This model can simulate three
distinct periods of the Universe: (a) an accelerated epoch where the energy
density of the scalar field prevails over the matter field, (b) a past
decelerated period where the energy density of the matter field becomes more
predominant than the scalar energy density, and (c) a present acceleration
phase where the scalar energy density overcomes the energy density of the
matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic
Information entropy of classical versus explosive percolation
We study the Shannon entropy of the cluster size distribution in classical as
well as explosive percolation, in order to estimate the uncertainty in the
sizes of randomly chosen clusters. At the critical point the cluster size
distribution is a power-law, i.e. there are clusters of all sizes, so one
expects the information entropy to attain a maximum. As expected, our results
show that the entropy attains a maximum at this point for classical
percolation. Surprisingly, for explosive percolation the maximum entropy does
not match the critical point. Moreover, we show that it is possible determine
the critical point without using the conventional order parameter, just
analysing the entropy's derivatives.Comment: 6 pages, 6 figure
Noncommutativity due to spin
Using the Berezin-Marinov pseudoclassical formulation of spin particle we
propose a classical model of spin noncommutativity. In the nonrelativistic
case, the Poisson brackets between the coordinates are proportional to the spin
angular momentum. The quantization of the model leads to the noncommutativity
with mixed spacial and spin degrees of freedom. A modified Pauli equation,
describing a spin half particle in an external e.m. field is obtained. We show
that nonlocality caused by the spin noncommutativity depends on the spin of the
particle; for spin zero, nonlocality does not appear, for spin half, , etc. In the relativistic case the noncommutative
Dirac equation was derived. For that we introduce a new star product. The
advantage of our model is that in spite of the presence of noncommutativity and
nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation
it gives noncommutativity with a nilpotent parameter.Comment: 11 pages, references adda
Characterizing Weak Chaos using Time Series of Lyapunov Exponents
We investigate chaos in mixed-phase-space Hamiltonian systems using time
series of the finite- time Lyapunov exponents. The methodology we propose uses
the number of Lyapunov exponents close to zero to define regimes of ordered
(stickiness), semi-ordered (or semi-chaotic), and strongly chaotic motion. The
dynamics is then investigated looking at the consecutive time spent in each
regime, the transition between different regimes, and the regions in the
phase-space associated to them. Applying our methodology to a chain of coupled
standard maps we obtain: (i) that it allows for an improved numerical
characterization of stickiness in high-dimensional Hamiltonian systems, when
compared to the previous analyses based on the distribution of recurrence
times; (ii) that the transition probabilities between different regimes are
determined by the phase-space volume associated to the corresponding regions;
(iii) the dependence of the Lyapunov exponents with the coupling strength.Comment: 8 pages, 6 figure
- …