977 research outputs found

    Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations

    Get PDF
    We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie\u27s yellow perch (Perca flavescens) population during 2006-2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river-and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems

    Economic reform and political risk in the GCC: implications for U.S. government and business

    Get PDF
    The following is a transcript of the eighty-fifth in a series of Capitol Hill conferences convened by the Middle East Policy Council. The meeting was held at the Russell Senate Office Building in Washington, DC, on July 12, 2016, with Richard J. Schmierer, chairman of the board of directors of the Middle East Policy Council, moderating, and Thomas R. Mattair, Council executive director, serving as discussant. The video can be accessed at www.mepc.org

    Fertility Control Options for Management of Free-roaming Horse Populations

    Get PDF
    The management of free-roaming horses (Equus ferus) and burros (E. asinus) in the United States has been referred to as a “wicked problem” because, although there are population control options, societal values will ultimately determine what is acceptable and what is not. In the United States, free-roaming equids are managed by different types of organizations and agencies, and the landscapes that these animals inhabit vary widely in terms of access, size, topography, climate, natural resources, flora, and fauna. This landscape diversity, coupled with contemporary socioeconomic and political environments, means that adaptive management practices are needed to regulate these free-roaming populations. The Bureau of Land Management (BLM) currently manages free-roaming equids on 177 herd management areas in the United States by applying fertility control measures in situ and/or removing horses, which are either adopted by private individuals or sent to long-term holding facilities. The BLM off-range population currently includes \u3e50,000 animals and costs approximately $50 million USD per year to maintain; on-range equid numbers were estimated in March 2022 to be approximately 82,384. On-range populations can grow at 15–20% annually, and current estimates far exceed the designated appropriate management level of 26,715. To reduce population recruitment, managers need better information about effective, long-lasting or permanent fertility control measures. Because mares breed only once a year, fertility control studies take years to complete. Some contraceptive approaches have been studied for decades, and results from various trials can collectively inform future research directions and actions. Employing 1 or more fertility control tools in concert with removals offers the best potential for success. Active, iterative, cooperative, and thoughtful management practices can protect free-roaming horses while simultaneously protecting the habitat. Herein, we review contraceptive vaccines, intrauterine devices, and surgical sterilization options for controlling fertility of free-roaming horses. This review provides managers with a “fertility control toolbox” and guides future research

    Chronicles of Oklahoma

    Get PDF
    Notes and Documents, Chronicles of Oklahoma, Volume 36, Number 2, Summer 1958. It includes documents about the dedication of a bust of Robert Lee Williams, the OHS annual tour, the history of the Oklahoma Panhandle, the establishment of Boggy Depot State Park, the history of St. John's Mission in Prairie City, the history of Sivler City on the Chisholm Trail, a correction, and Oklahoma historical markers

    Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie

    Full text link
    Many aquatic ecosystems are experiencing multiple anthropogenic stressors that threaten their ability to support ecologically and economically important fish species. Two of the most ubiquitous stressors are climate change and non- point source nutrient pollution.Agricultural conservation practices (ACPs, i.e. farming practices that reduce runoff, prevent erosion, and curb excessive nutrient loading) offer a potential means to mitigate the negative effects of non- point source pollution on fish populations. However, our understanding of how ACP implementation amidst a changing climate will affect fish production in large ecosystems that receive substantial upstream sediment and nutrient inputs remains incomplete.Towards this end, we explored how anticipated climate change and the implementation of realistic ACPs might alter the recruitment dynamics of three fish populations (native walleye Sander vitreus and yellow perch Perca flavescens and invasive white perch Morone americana) in the highly productive, dynamic west basin of Lake Erie. We projected future (2020- 2065) recruitment under different combinations of anticipated climate change (n = 2 levels) and ACP implementation (n = 4 levels) in the western Lake Erie catchment using predictive biological models driven by forecasted winter severity, spring warming rate, and Maumee River total phosphorus loads that were generated from linked climate, catchment- hydrology, and agricultural- practice- simulation models.In general, our models projected reduced walleye and yellow perch recruitment whereas invasive white perch recruitment was projected to remain stable or increase relative to the recent past. Our modelling also suggests the potential for trade- offs, as ACP implementation was projected to reduce yellow perch recruitment with anticipated climate change.Overall, our study presents a useful modelling framework to forecast fish recruitment in Lake Erie and elsewhere, as well as offering projections and new avenues of research that could help resource management agencies and policy- makers develop adaptive and resilient management strategies in the face of anticipated climate and land- management change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156436/2/fwb13515.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156436/1/fwb13515_am.pd
    • 

    corecore