102 research outputs found

    Rare gas flow structuration in plasma jet experiments

    Get PDF
    Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min−1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species

    Estimating the economic value of interannual reservoir storage in water resource systems

    Get PDF
    Reservoir operators face pressures on timing releases of water. Releasing too much water immediately can threaten future supplies and costs, but not releasing enough creates immediate economic hardship downstream. This paper examines how the economic valuation of end‐of‐year carryover storage can lead to optimal amounts of carryover storage in complex large water resource systems. Economic carryover storage value functions (COSVFs) are developed to represent the value of storage in the face of interannual inflow uncertainty and variability within water resource optimization models. The approach divides a perfect foresight optimization problem into year‐long (limited foresight) subproblems solved sequentially by a within‐year optimization engine to find optimal short‐term operations. The final storage state from the previous year provides the initial condition to each annual problem, and end‐of‐year COSVFs are the final condition. Here the COSVF parameters that maximize the interannual benefits from river basin operations are found by evolutionary search. This generalized approach can handle nonconvexity in large‐scale water resources systems. The approach is illustrated with a regional model of the California Central Valley water system including 30 reservoirs, 22 aquifers, and 51 urban and agricultural demand sites. Head‐dependent pumping costs make the optimization problem nonconvex. Optimized interannual reservoir operation improves over more cautious operation in the historical approximation, reducing the average annual scarcity volume and costs by 80% and 98%, respectively, with more realistic representation of hydrologic foresight for California's Mediterranean climate. The economic valuation of storage helps inform water storage decisions

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio

    AGU hydrology days 2006

    No full text
    2006 annual AGU hydrology days was held at Colorado State University on March 20 - March 22, 2006.Includes bibliographical references.This paper presents an application of an evolutionary optimization algorithm for multiobjective analysis of selective withdrawal from a thermally stratified reservoir. A multiobjective particle swarm optimization (MOPSO) algorithm is used to find nondominated (Pareto) solutions when minimizing deviations from outflow water quality targets of: (i) temperature; (ii) dissolved oxygen (DO); (iii) total dissolved solids (TDS); and (iv) potential of hydrogen (pH). The decision variables are the flows through each port in the selective withdrawal structure. The MOPSO algorithm, implemented as an add-in for Excel, is able to find nondominated solutions for any combination of the four abovementioned objectives. An interactive graphical method was also developed to display nondominated solutions in such way that the best compromise solutions can be identified for different relative importance given to each objective. The method allows the decision maker to explore the Pareto set and visualize not only the best compromise solution but also sets of solutions that provide similar compromises

    A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality

    No full text
    Abstract. This paper presents an application of an evolutionary optimization algorithm for multiobjective analysis of selective withdrawal from a thermally stratified reservoir. A multiobjective particle swarm optimization (MOPSO) algorithm is used to find nondominated (Pareto) solutions when minimizing deviations from outflow water quality targets of: (i) temperature; (ii) dissolved oxygen (DO); (iii) total dissolved solids (TDS); and (iv) potential of hydrogen (pH). The decision variables are the flows through each port in the selective withdrawal structure. The MOPSO algorithm, implemented as an add-in for Excel, is able to find nondominated solutions for any combination of the four abovementioned objectives. An interactive graphical method was also developed to display nondominated solutions in such way that the best compromise solutions can be identified for different relative importance given to each objective. The method allows the decision maker to explore the Pareto set and visualize not only the best compromise solution but also sets of solutions that provide similar compromises. 1

    Wide band-gap tuning Cu2ZnSn1-xGexS4 single crystals: Optical and vibrational properties

    Get PDF
    7 págs.; 7 figs.; 3 tabs.The linear optical properties of Cu2ZnSn1¿xGexS4 high quality single crystals with a wide range of Ge contents (x=0.1, 0.3, 0.5, 0.7, 0.9 and 1) have been investigated in the ultraviolet and near infrared range using spectroscopic ellipsometry measurements. From the analysis of the complex dielectric function spectra it has been found that the bandgap E0 increases continuously from 1.49 eV to 2.25 eV with the Ge content. Furthermore, the evolution of the interband transitions E1A and E1B has been also determined. Raman scattering using three different excitation wavelengths and its analysis have been performed to confirm the absence of secondary phases in the samples, and to distinguish between stannite, wurtzite, wurzstannite and kesterite structures. Additionally, the analysis of the high resolution Raman spectra obtained in samples with different [Ge]/([Ge]+[Sn]) ratios allows describing a bimodal behavior of the dominant A modes. The understanding of the incorporation of Ge into the Cu2ZnSnS4 lattice is fundamental in order to develop efficient bandgap engineering of these compounds towards the fabrication of kesterite based solar cells with enhanced performance. & 2015 Elsevier B.V.This work was supported by the Marie Curie-ITN project (KESTCELL, GA: 316488), Marie Curie-IRSES project (PVICOKEST, GA: 269167), AMALIE (TEC2012-38901-C02-01) and SUNBEAM (ENE2013-49136-C4-3-R) project funded by the Spanish Ministry of Economy and Competitiveness. RC acknowledges financial support from Spanish MINECO within the Ramón y Cajal Program (RYC-2011-08521).Peer Reviewe
    corecore