373 research outputs found
Schoolchildren in the Principality of Liechtenstein are mildly iodine deficient
Abstract Objective To investigate the iodine status of schoolchildren in the Principality of Liechtenstein. Design A representative, cross-sectional principality-wide screening of iodine level in household salt and urinary iodine concentrations (UIC) in primary-school children. Data were compared with the WHO criteria and with 2009 iodine survey data from Switzerland, a neighbouring country that supplies most of the salt used in Liechtenstein. Settings Principality of Liechtenstein. Subjects Schoolchildren (n 228) aged 6-12 years from five different primary schools representing 11·4 % of the children at this age. Results The median UIC was 96 (range: 10-446) μg/l; 11 %, 56 % and 1 % of children had a UIC 300 μg/l, respectively. In all, 79 % of households were using adequately iodised salt (≥15 ppm). The median UIC was 20 % lower than that in children at comparable age in Switzerland (120 μg/l; P < 0·05). Conclusions According to the WHO criteria, schoolchildren in Liechtenstein are mildly iodine deficient and household iodised salt coverage is inadequate. Public health measures to increase iodine intakes in the Principality should be considere
Multimineral nutritional supplements in a nano-CaO matrix
The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≤ Ca:Fe ≤ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailabilit
Recommended from our members
Group 6 metal complexes as electrocatalysts of CO2 reduction: strong substituent control of the reduction path of [Mo(η3-allyl)(CO)2(x,x′-dimethyl-2,2′-bipyridine)(NCS)] (x = 4–6)
A series of complexes [Mo(η3-allyl)(CO)2)(x,x′-dmbipy)(NCS)] (dmbipy = dimethyl-2,2′-bipyridine; x = 4–6) have been synthesized and their electrochemical reduction investigated using combined cyclic voltammetry (CV) and variable-temperature spectroelectrochemistry (IR/UV-vis SEC) in tetrahydrofuran (THF) and butyronitrile (PrCN), at gold and platinum electrodes. The experimental results, strongly supported by density functional theory (DFT) calculations, indicate that the general cathodic path of these Group 6 organometallic complexes is closely related to that of the intensively studied class of Mn tricarbonyl α-diimine complexes, which, themselves, have recently been identified as important smart materials for catalytic CO2 reduction. The dimethyl substitution on the 2,2′-bipyridine ligand backbone has presented new insights into this emerging class of catalysts. For the first time, the 2e– reduced 5-coordinate anions [Mo(η3-allyl)(CO)2)(x,x′-dmbipy)]− were directly observed with infrared spectroelectrochemistry (IR SEC). The role of steric and electronic effects in determining the reduction-induced reactivity was also investigated. For the 6,6′-dmbipy, the primary 1e– reduced radical anions exert unusual stability, radically changing the follow-up cathodic path. The 5-coordinate anion [Mo(η3-allyl)(CO)2)(6,6′-dmbipy)]− remains stable at low temperature in strongly coordinating butyronitrile and does not undergo dimerization at elevated temperature, in sharp contrast to reactive [Mo(η3-allyl)(CO)2)(4,4′-dmbipy)]− that tends to dimerize in a reaction with the parent complex. The complex with the 5,5′-dmbipy ligand combines both types of reactivity. Under aprotic conditions, the different properties of [Mo(η3-allyl)(CO)2)(x,x′-dmbipy)]− are also reflected in their reactivity toward CO2. Preliminary CV and IR SEC results reveal differences in the strength of CO2 coordination at the free axial position. Catalytic waves attributed to the generation of the 5-coordinate anions were observed using CV, but only a modest catalytic performance toward the production of formate was demonstrated by IR SEC. For 6,6′-dmbipy, a stronger catalytic effect was observed for the Au cathode, compared to Pt
Uncertainty of ICESat-2 ATL06- and ATL08-Derived Snow Depths for Glacierized and Vegetated Mountain Regions
Seasonal snow melt dominates the hydrologic budget across a large portion of the globe. Snow accumulation and melt vary over a broad range of spatial scales, preventing accurate extrapolation of sparse in situ observations to watershed scales. The lidar onboard the Ice, Cloud, and land Elevation, Satellite (ICESat-2) was designed for precise mapping of ice sheets and sea ice, and here we assess the feasibility of snow depth-mapping using ICESat-2 data in more complex and rugged mountain landscapes. We explore the utility of ATL08 Land and Vegetation Height and ATL06 Land Ice Height differencing from reference elevation datasets in two end member study sites. We analyze ∼3 years of data for Reynolds Creek Experimental Watershed in Idaho\u27s Owyhee Mountains and Wolverine Glacier in southcentral Alaska\u27s Kenai Mountains. Our analysis reveals decimeter-scale uncertainties in derived snow depth and glacier mass balance at the watershed scale. Both accuracy and precision decrease as slope increases: the magnitudes of the median and median of the absolute deviation of elevation errors (MAD) vary from ∼0.2 m for slopes \u3c 5° to \u3e 1 m for slopes \u3e 20°. For glacierized regions, failure to account for intra- and inter-annual evolution of glacier surface elevations can strongly bias ATL06 elevations, resulting in under-estimation of the mass balance gradient with elevation. Based on these results, we conclude that ATL08 and ATL06 observations are best suited for characterization of watershed-scale snow depth and mass balance gradients over relatively shallow slopes with thick snowpacks. In these regions, ICESat-2 elevation residual-derived snow depth and mass balance transects can provide valuable watershed scale constraints on terrain parameter- and model-derived estimates of snow accumulation and melt
Inhibition of calcium-dependent protein kinase 1 (CDPK1) in vitro by pyrazolopyrimidine derivatives does not correlate with sensitivity of Cryptosporidium parvum growth in cell culture
Cryptosporidiosis is a serious diarrheal disease in immunocompromised patients and malnourished children, and treatment is complicated by a lack of adequate drugs. Recent studies suggest that the natural occurrence of a small gatekeeper residue in serine threonine calcium-dependent protein kinase 1 (CDPK1) of Cryptosporidium parvum might be exploited to target this enzyme and block parasite growth. Here were explored the potency with which a series of pyrazolopyrimidine analogs, which are selective for small gatekeeper kinases, inhibit C. parvum CDPK1 and block C. parvum growth in tissue culture in vitro. Although these compounds potently inhibited kinase activity in vitro, most had no effect on parasite growth. Moreover, among those that were active against parasite growth, there was a very poor correlation with their 50% inhibitory concentrations against the enzyme. Active compounds also had no effect on cell invasion, unlike the situation in Toxoplasma gondii, where these compounds block CDPK1, prevent microneme secretion, and disrupt cell invasion. These findings suggest that CPDK1 is not essential for C. parvum host cell invasion or growth and therefore that it is not the optimal target for therapeutic intervention. Nonetheless, several inhibitors with low micromolar 50% effective concentrations were identified, and these may affect other essential targets in C. parvum that are worthy of further exploration
MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation
In this paper, we present MLP, a MATLAB toolbox enabling auditory
thresholds estimation via the adaptive Maximum Likelihood procedure proposed
by David Green (1990, 1993). This adaptive procedure is particularly appealing for
those psychologists that need to estimate thresholds with a good degree of accuracy
and in a short time. Together with a description of the toolbox, the current text
provides an introduction to the threshold estimation theory and a theoretical
explanation of the maximum likelihood adaptive procedure. MLP comes with a
graphical interface and it is provided with several built-in, classic psychoacoustics
experiments ready to use at a mouse click
- …