26 research outputs found

    Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    Get PDF
    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d−/− BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose

    Intradermal Electroporation of Naked Replicon RNA Elicits Strong Immune Responses

    Get PDF
    RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines

    Current economic trends in selected South Pacific countries, 1988

    Get PDF
    The year 1988 was a relatively prosperous one for the Pacific islands, other than Fiji, largely because international demand remained strong and because there were certain favourable domestic developments (for example, increasing mineral production in Papua New Guinea)

    The pyrrolo-1,5-benzoxazepine,PBOX-6, inhibits the growth of breast cancer cells in vitro independent of estrogen receptor status and inhibits breast tumor growth in vivo

    No full text
    Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.</p
    corecore