704 research outputs found

    A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Get PDF
    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects

    Simple and efficient moving horizon estimation based on the fast gradient method

    Get PDF
    By now many results with respect to the fast and efficient implementation of model predictive control exist. However, for moving horizon estimation, only a few results are available. We present a simple solution algorithm tailored to moving horizon estimation of linear, discrete time systems. In a first step the problem is reformulated such that only the states remain as optimization variables, i.e. process and measurement noise are eliminated from the optimization problem. This reformulation enables the use of the fast gradient method, which has recently received a lot of attention for the solution of model predictive control problems. In contrast to the model predictive control case, the Hessian matrix is time- varying in moving horizon estimation, due to the time-varying nature of the arrival cost. Therefore, we outline a tailored method to compute online the lower and upper eigenvalues of the Hessian matrix required by the here considered fast gradient method. In addition, we discuss stopping criteria and various implementation details. An example illustrates the efficiency of the proposed algorithm

    Control and Coordination in Hierarchical Systems

    Get PDF
    This book presents the applied theory of control and cooordination in hierarchical systems which are those where decision making has been divided in a certain way. It concentrates on various aspects of optimal control in large scale systems and covers a range of topics from multilevel methods for optimizing by interactive feedback procedures to methods for sequential, hierarchical control in large dynamic systems

    Performance of Sensitivity based NMPC Updates in Automotive Applications

    Full text link
    In this work we consider a half car model which is subject to unknown but measurable disturbances. To control this system, we impose a combination of model predictive control without stabilizing terminal constraints or cost to generate a nominal solution and sensitivity updates to handle the disturbances. For this approach, stability of the resulting closed loop can be guaranteed using a relaxed Lyapunov argument on the nominal system and Lipschitz conditions on the open loop change of the optimal value function and the stage costs. For the considered example, the proposed approach is realtime applicable and corresponding results show significant performance improvements of the updated solution with respect to comfort and handling properties.Comment: 6 pages, 2 figure

    Metabolic syndrome predicts vascular changes in whole body magnetic resonance imaging in patients with long standing diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although diabetic patients have an increased rate of cardio-vascular events, there is considerable heterogeneity with respect to cardiovascular risk, requiring new approaches to individual cardiovascular risk factor assessment. In this study we used whole body-MR-angiography (WB-MRA) to assess the degree of atherosclerosis in patients with long-standing diabetes and to determine the association between metabolic syndrome (MetS) and atherosclerotic burden.</p> <p>Methods</p> <p>Long standing (≥10 years) type 1 and type 2 diabetic patients (n = 59; 31 males; 63.3 ± 1.7 years) were examined by WB-MRA. Based on the findings in each vessel, we developed an overall score representing the patient's vascular atherosclerotic burden (MRI-score). The score's association with components of the MetS was assessed.</p> <p>Results</p> <p>The median MRI-score was 1.18 [range: 1.00-2.41] and MetS was present in 58% of the cohort (type 2 diabetics: 73%; type 1 diabetics: 26%). Age (p = 0.0002), HDL-cholesterol (p = 0.016), hypertension (p = 0.0008), nephropathy (p = 0.0093), CHD (p = 0.001) and MetS (p = 0.0011) were significantly associated with the score. Adjusted for age and sex, the score was significantly (p = 0.02) higher in diabetics with MetS (1.450 [1.328-1.572]) compared to those without MetS (1.108 [0.966-1.50]). The number of MetS components was associated with a linear increase in the MRI-score (increase in score: 0.09/MetS component; r<sup>2 </sup>= 0.24, p = 0.038). Finally, using an established risk algorithm, we found a significant association between MRI-score and 10-year risk for CHD, fatal CHD and stroke.</p> <p>Conclusion</p> <p>In this high-risk diabetic population, WB-MRA revealed large heterogeneity in the degree of systemic atherosclerosis. Presence and number of traits of the MetS are associated with the extent of atherosclerotic burden. These results support the perspective that diabetic patients are a heterogeneous population with increased but varying prevalence of atherosclerosis and risk.</p

    MINSTED nanoscopy enters the Ångström localization range

    Get PDF
    We report all-optical, room-temperature localization of fluorophores with precision in the Ångström range. These precisions are attained in a STED microscope, by encircling the fluorophore with the low-intensity edge of the STED donut beam, while constantly increasing the absolute donut power. Individual fluorophores bound to a DNA strand are localized with σ = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Since our experiments yield a localization precision σ = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up entirely new areas of application in the study of macromolecular complexes in cells

    Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    Get PDF
    Proliferation of smooth muscle cells (SMCs) during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT), indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT

    CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    Get PDF
    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk
    corecore