24 research outputs found

    Detrimental effects of an inhaled phosphodiesterase-4 inhibitor on lung inflammation in ventilated preterm lambs exposed to chorioamnionitis are dose dependent

    Get PDF
    Background: Treatment of bronchopulmonary dysplasia in preterm infants is challenging due to its multifactorial origin. In rodent models of neonatal lung injury, selective inhibition of phosphodiesterase 4 (PDE4) has been shown to exert anti-inflammatory properties in the lung. We hypothesized that GSK256066, a highly selective, inhalable PDE4 inhibitor, would have beneficial effects on lung injury and inflammation in a triple hit lamb model of Ureaplasma parvum (UP)-induced chorioamnionitis, prematurity, and mechanical ventilation. Methods: Twenty-one preterm lambs were surgically delivered preterm at 129 days after 7 days intrauterine exposure to UP. Sixteen animals were subsequently ventilated for 24 hours and received endotracheal surfactant and intravenous caffeine citrate. Ten animals were randomized to receive twice a high (10 μg/kg) or low dose (1 μg/kg) of nebulized PDE4 inhibitor. Results: Nebulization of high, but not low, doses of PDE4 inhibitor led to a significant decrease in pulmonary PDE activity, and was associated with lung injury and vasculitis, influx of neutrophils, and increased proinflammatory cytokine messenger RNA levels. Conclusion: Contrary to our hypothesis, we found in our model a dose-dependent proinflammatory effect of an inhaled highly selective PDE4 inhibitor in the lung. Our findings indicate the narrow therapeutic range of inhaled PDE4 inhibitors in the preterm population

    A putative antiviral role of plant cytidine deaminases

    Full text link
    [EN] Background: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant Arabidopsis thaliana genome encodes nine cytidine deaminases (AtCDAs), raising the question of whether deamination is an antiviral mechanism in plants as well. Methods: Here we tested the effects of expression of AtCDAs on the pararetrovirus Cauliflower mosaic virus (CaMV). Two different experiments were carried out. First, we transiently overexpressed each one of the nine A. thaliana AtCDA genes in Nicotiana bigelovii plants infected with CaMV, and characterized the resulting mutational spectra, comparing them with those generated under normal conditions. Secondly, we created A. thaliana transgenic plants expressing an artificial microRNA designed to knock-out the expression of up to six AtCDA genes. This and control plants were then infected with CaMV. Virus accumulation and mutational spectra where characterized in both types of plants. Results: We have shown that the A. thaliana AtCDA1 gene product exerts a mutagenic activity, significantly increasing the number of G to A mutations in vivo, with a concomitant reduction in the amount of CaMV genomes accumulated. Furthermore, the magnitude of this mutagenic effect on CaMV accumulation is positively correlated with the level of AtCDA1 mRNA expression in the plant. Conclusions: Our results suggest that deamination of viral genomes may also work as an antiviral mechanism in plants.This work was supported by the former Spanish Ministerio de Ciencia e Innovación-FEDER grant BFU2009-06993 to SFE. JMC was supported by the CSIC JAE-doc program/Fondo Social Europeo. AG-P was supported by a grant for Scientific and Technical Activities and by grant P10-CVI-65651, both from Junta de Andalucía.Martín, S.; Cuevas, J.; Grande-Perez, A.; Elena Fito, SF. (2017). A putative antiviral role of plant cytidine deaminases. F1000Research. 1-14. https://doi.org/10.12688/f1000research.11111.2S11

    Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    No full text
    Background:Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation.Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4.Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p < 0.01 and p < 0.05). Intracellular protein expression of TNF-α, IL-1β and IL-8 in Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p < 0.05). Remarkably, ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p < 0.01, vs. LPS). In contrast to LPS, both isolates induced TLR2 mRNA in neonatal and adult cells (p < 0.001 and p < 0.05) and suppressed TLR4 mRNA in adult monocytes (p < 0.05). Upon co-stimulation, Uu8 and Up3 inhibited LPS-induced intracellular IL-1β (p < 0.001 and p < 0.05) and IL-8 in adult monocytes (p < 0.01), while LPS-induced neonatal cytokines were maintained or aggravated (p < 0.05).Conclusion: Our data demonstrate a considerable pro-inflammatory capacity of Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of TLR2 and TLR4 expression may shape host susceptibility to inflammation
    corecore