77 research outputs found
Hydrostatic equilibrium of insular, static, spherically symmetric, perfect fluid solutions in general relativity
An analysis of insular solutions of Einstein's field equations for static,
spherically symmetric, source mass, on the basis of exterior Schwarzschild
solution is presented. Following the analysis, we demonstrate that the {\em
regular} solutions governed by a self-bound (that is, the surface density does
not vanish together with pressure) equation of state (EOS) or density variation
can not exist in the state of hydrostatic equilibrium, because the source mass
which belongs to them, does not represent the `actual mass' appears in the
exterior Schwarzschild solution. The only configuration which could exist in
this regard is governed by the homogeneous density distribution (that is, the
interior Schwarzschild solution). Other structures which naturally fulfill the
requirement of the source mass, set up by exterior Schwarzschild solution (and,
therefore, can exist in hydrostatic equilibrium) are either governed by
gravitationally-bound regular solutions (that is, the surface density also
vanishes together with pressure), or self-bound singular solutions (that is,
the pressure and density both become infinity at the centre).Comment: 16 pages (including 1 table); added section 5; accepted for
publication in Modern Physics Letters
Nonlocal Equation of State in Anisotropic Static Fluid Spheres in General Relativity
We show that it is possible to obtain credible static anisotropic spherically
symmetric matter configurations starting from known density profiles and
satisfying a nonlocal equation of state. These particular types of equation of
state describe, at a given point, the components of the corresponding
energy-momentum tensor not only as a function at that point, but as a
functional throughout the enclosed configuration. To establish the physical
plausibility of the proposed family of solutions satisfying nonlocal equation
of state, we study the constraints imposed by the junction and energy
conditions on these bounded matter distributions.
We also show that it is possible to obtain physically plausible static
anisotropic spherically symmetric matter configurations, having nonlocal
equations of state\textit{,}concerning the particular cases where the radial
pressure vanishes and, other where the tangential pressures vanishes. The later
very particular type of relativistic sphere with vanishing tangential stresses
is inspired by some of the models proposed to describe extremely magnetized
neutron stars (magnetars) during the transverse quantum collapse.Comment: 21 pages, 1 figure, minor changes in the text, references added, two
new solutions studie
Static charged perfect fluid spheres in general relativity
Interior perfect fluid solutions for the Reissner-Nordstrom metric are
studied on the basis of a new classification scheme. General formulas are found
in many cases. Explicit new global solutions are given as illustrations. Known
solutions are briefly reviewed.Comment: 23 pages, Revtex (galley), journal version, to appear in Phys.Rev.
Galaxy Counterparts of metal-rich Damped Lyman-alpha Absorbers - I: The case of the z=2.35 DLA towards Q2222-0946
We have initiated a survey using the newly commissioned X-shooter
spectrograph to target candidate relatively metal-rich damped Lyman-alpha
absorbers (DLAs). The spectral coverage of X-shooter allows us to search for
not only Lyman-alpha emission, but also rest-frame optical emission lines. We
have chosen DLAs where the strongest rest-frame optical lines ([OII], [OIII],
Hbeta and Halpha) fall in the NIR atmospheric transmission bands. In this first
paper resulting from the survey, we report on the discovery of the galaxy
counterpart of the z_abs = 2.354 DLA towards the z=2.926 quasar Q2222$-0946.
This DLA is amongst the most metal-rich z>2 DLAs studied so far at comparable
redshifts and there is evidence for substantial depletion of refractory
elements onto dust grains. We measure metallicities from ZnII, SiII, NiII, MnII
and FeII of -0.46+/-0.07, -0.51+/-0.06, -0.85+/-0.06, -1.23+/-0.06, and
-0.99+/-0.06, respectively. The galaxy is detected in the Lyman-alpha, [OIII]
lambda4959,5007 Halpha emission lines at an impact parameter of about 0.8
arcsec (6 kpc at z_abs = 2.354). We infer a star-formation rate of 10 M_sun
yr^-1, which is a lower limit due to the possibility of slit-loss. Compared to
the recently determined Halpha luminosity function for z=2.2 galaxies the
DLA-galaxy counterpart has a luminosity of L~0.1L^*_Halpha. The emission-line
ratios are 4.0 (Lyalpha/Halpha) and 1.2 ([OIII]/Halpha). The Lyalpha line shows
clear evidence for resonant scattering effects, namely an asymmetric,
redshifted (relative to the systemic redshift) component and a much weaker
blueshifted component. The fact that the blueshifted component is relatively
weak indicates the presence of a galactic wind. The properties of the galaxy
counterpart of this DLA is consistent with the prediction that metal-rich DLAs
are associated with the most luminous of the DLA-galaxy counterparts.Comment: 9 pages, 7 figures. Accepted for publication in MNRA
Nuclear Skins and Halos in the Mean-Field Theory
Nuclei with large neutron-to-proton ratios have neutron skins, which manifest
themselves in an excess of neutrons at distances greater than the radius of the
proton distribution. In addition, some drip-line nuclei develop very extended
halo structures. The neutron halo is a threshold effect; it appears when the
valence neutrons occupy weakly bound orbits. In this study, nuclear skins and
halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov
and relativistic Hartree-Bogoliubov theories for spherical shapes. It is
demonstrated that skins, halos, and surface thickness can be analyzed in a
model-independent way in terms of nucleonic density form factors. Such an
analysis allows for defining a quantitative measure of the halo size. The
systematic behavior of skins, halos, and surface thickness in even-even nuclei
is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical
Review
Minimally Invasive Gingival Recession Treatment by Using Vista Combined With PRF and Collagen Membrane: A Case Report
Root exposure generates major concerns regarding aesthetics and other problems like hypersensitivity and root caries. Gingival recession has traditionally been treated by periodontal plastic surgery, often using soft tissue grafts to fill the defect with excellent clinical results. Advancements in root coverage procedures in the aesthetic zone have led to increasing the ability of clinicians to harness a treatment modality that delivers better outcomes with less surgical morbidity. Collagen membrane is most commonly used for guided tissue regeneration (GTR). On the other hand, platelet-rich fibrin (PRF) has gained popularity due to its simple method of acquisition, low cost and the presence of growth factors. Therefore, this case report describes the treatment of a 38-year-old patient with bilateral multiple Miller’s class I recession defects extending from central incisors to canines by using the vestibular incision subperiosteal tunnel access (VISTA) with PRF and collagen membrane. Clinical parameters such as recession height (RH) and width of keratinised gingiva (WKG) were measured at 6-month and 1-year follow up intervals. The 6-month follow-up revealed optimum root coverage with excellent outcomes for both sites, with an increase in the width of keratinised gingiva and a decrease in the recession height, and less discomfort in the site treated with a PRF membrane. These clinical parameters were maintained at the 1-year follow up. The increase in the width of keratinised gingiva and the decrease in the recession height in both groups and the patient compliance due to this minimally invasive procedure suggests its potential use when aesthetics and patient comfort are of paramount concern
Massive Spheres in General Relativity & Large Gravitational of Quasars
287-292The effect of a layer of high density matter surrounding a spherical configuration has been studied. It has been shown that the maximum surface red-shift zs can be as large as 4.828. It is also shown that zs, and (radius) ratio increase when a sphere is surrounded by a layer of high density matter. Models of quasar proposed and the ratios (core mass/total mass) for some quasars with zs > 2 have been tabulated for two specific distributions of matter at the core
- …