42 research outputs found
Transport properties of annealed CdSe nanocrystal solids
Transport properties of artificial solids composed of colloidal CdSe
nanocrystals (NCs) are studied from 6 K to 250 K, before and after annealing.
Annealing results in greatly enhanced dark and photocurrent in NC solids, while
transmission electron microscopy (TEM) micrographs show that the inter-dot
separation decreases. The increased current can be attributed to the
enhancement of inter-dot tunneling caused by the decreased separation between
NCs and by chemical changes in their organic cap. In addition, the absorption
spectra of annealed solids are slightly red-shifted and broadened. These
red-shifts may result from the change of the dielectric environment around the
NCs. Our measurements also indicate that Coulomb interactions between charges
on neighboring NCs play an important role in the tunneling current.Comment: 24 pages,4 figures, 1 tabl
Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing
We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using
a nanometer scale silicon MOSFET as a charge sensor. This charge detection
technique makes possible the measurement of extremely large resistances. At
high temperatures, where the a-Si:H resistance is not too large, the charge
detection measurement agrees with a direct measurement of current. The device
geometry allows us to probe both the field effect and dispersive transport in
the a-Si:H using charge sensing and to extract the density of states near the
Fermi energy.Comment: 4 pages, 4 figure
Design of photonic crystal microcavities for cavity QED
We discuss the optimization of optical microcavity designs based on 2D
photonic crystals for the purpose of strong coupling between the cavity field
and a single neutral atom trapped within a hole. We present numerical
predictions for the quality factors and mode volumes of localized defect modes
as a function of geometric parameters, and discuss some experimental challenges
related to the coupling of a defect cavity to gas-phase atoms.Comment: 12 pages, 16 figure
Recommended from our members
Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene.
The properties of van der Waals (vdW) materials often vary dramatically with the atomic stacking order between layers, but this order can be difficult to control. Trilayer graphene (TLG) stacks in either a semimetallic ABA or a semiconducting ABC configuration with a gate-tunable band gap, but the latter has only been produced by exfoliation. Here we present a chemical vapor deposition approach to TLG growth that yields greatly enhanced fraction and size of ABC domains. The key insight is that substrate curvature can stabilize ABC domains. Controllable ABC yields ~59% were achieved by tailoring substrate curvature levels. ABC fractions remained high after transfer to device substrates, as confirmed by transport measurements revealing the expected tunable ABC band gap. Substrate topography engineering provides a path to large-scale synthesis of epitaxial ABC-TLG and other vdW materials
An adaptive inelastic magnetic mirror for Bose-Einstein condensates
We report the reflection and focussing of a Bose-Einstein condensate by a new
pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely
high optical quality. The deviations from specularity are less than 0.5 mrad
rms, making this the best atomic mirror demonstrated to date. We have also used
the mirror to realize the analog of a beam-expander, producing an ultra-cold
collimated fountain of matter wavesComment: 4 pages, 4 figure
Electronic transport in films of colloidal CdSe nanocrystals
We present results for electronic transport measurements on large
three-dimensional arrays of CdSe nanocrystals. In response to a step in the
applied voltage, we observe a power-law decay of the current over five orders
of magnitude in time. Furthermore, we observe no steady-state dark current for
fields up to 10^6 V/cm and times as long as 2x10^4 seconds. Although the
power-law form of the decay is quite general, there are quantitative variations
with temperature, applied field, sample history, and the material parameters of
the array. Despite evidence that the charge injected into the film during the
measurement causes the decay of current, we find field-scaling of the current
at all times. The observation of extremely long-lived current transients
suggests the importance of long-range Coulomb interactions between charges on
different nanocrystals.Comment: 11 pages, 10 figure
Guiding Neutral Atoms
We demonstrate the guiding of neutral atoms by the magnetic fields due to
microfabricated current-carrying wires on a chip. Atoms are guided along a
magnetic field minimum parallel to and above the current-carrying wires. Two
waveguide configurations are demonstrated: one using two wires with an external
magnetic field, and a second using four wires without an external field. These
waveguide geometries can be extended to integrated atom optics circuits,
including beamsplitters.Comment: 11 pages, 4 figure
A quantum point contact for neutral atoms
We show that the conductance of neutral atoms through a tightly confining
waveguide constriction is quantized in units of lambda_dB^2/pi, where lambda_dB
is the de Broglie wavelength of the incident atoms. Such a constriction forms
the atom analogue of an electron quantum point contact and is an example of
quantum transport of neutral atoms in an aperiodic system. We present a
practical constriction geometry that can be realized using a microfabricated
magnetic waveguide, and discuss how a pair of such constrictions can be used to
study the quantum statistics of weakly interacting gases in small traps.Comment: 5 pages with 3 figures. To appear in Phys. Rev. Let
DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore
We propose two-terminal devices for DNA sequencing which consist of a
metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its
interior through which the DNA molecule is translocated. Using the
nonequilibrium Green functions combined with density functional theory, we
demonstrate that each of the four DNA nucleotides inserted into the nanopore,
whose edge carbon atoms are passivated by either hydrogen or nitrogen, will
lead to a unique change in the device conductance. Unlike other recent
biosensors based on transverse electronic transport through DNA nucleotides,
which utilize small (of the order of pA) tunneling current across a nanogap or
a nanopore yielding a poor signal-to-noise ratio, our device concept relies on
the fact that in ZGNRs local current density is peaked around the edges so that
drilling a nanopore away from the edges will not diminish the conductance.
Inserting a DNA nucleotide into the nanopore affects the charge density in the
surrounding area, thereby modulating edge conduction currents whose magnitude
is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not
limited to ZGNRs and it could be realized with other nanowires supporting
transverse edge currents, such as chiral GNRs or wires made of two-dimensional
topological insulators.Comment: 6 pages, 6 figures, PDFLaTe
Properties of Microelectromagnet Mirrors as Reflectors of Cold Rb Atoms
Cryogenically cooled microelectromagnet mirrors were used to reflect a cloud
of free-falling laser-cooled 85Rb atoms at normal incidence. The mirrors
consisted of microfabricated current-carrying Au wires in a periodic serpentine
pattern on a sapphire substrate. The fluorescence from the atomic cloud was
imaged after it had bounced off a mirror. The transverse width of the cloud
reached a local minimum at an optimal current corresponding to minimum mirror
roughness. A distinct increase in roughness was found for mirror configurations
with even versus odd number of lines. These observations confirm theoretical
predictions.Comment: Physical Review A, in print; 11 pages, 4 figure