195 research outputs found
Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles
Immobilization of metalnanoparticles in hollowfibermembranes via alternating adsorption of polyelectrolytes and negatively charged Au nanoparticles yields catalytic reactors with high surface areas. SEM images show that this technique deposits a high density of unaggregated metalnanoparticles both on the surfaces and in the pores of the hollowfibers. Catalytic reduction of 4-nitrophenol with NaBH4, which can be easily monitored by UV–vis spectrophotometry, demonstrates that the nanoparticles in the hollowfibermembrane are highly catalytically active. In a single pass through the membrane, >99% of the 4-nitrophenol is reduced to 4-aminophenol, but this conversion decreases over time. The conversion decline may stem from catalyst fouling caused by by-products of 4-aminophenol oxidation
Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure
The synthesis of polymer-stabilized nanoparticles (PSNPs) can be successfully carried out using intermatrix synthesis (IMS) technique, which consists in sequential loading of the functional groups of a polymer with the desired metal ions followed by nanoparticles (NPs) formation stage. After each metal-loading-NPs-formation cycle, the functional groups of the polymer appear to be regenerated. This allows for repeating the cycles to increase the NPs content or to obtain NPs with different structures and compositions (e.g. core-shell or core-sandwich). This article reports the results on the further development of the IMS technique. The formation of NPs has been shown to proceed by not only the metal reduction reaction (e.g. Cu0-NPs) but also by the precipitation reaction resulting in the IMS of PSNPs of metal salts (e.g. CuS-NPs)
Evolutionary origins of hepatitis A virus in small mammals
The origins of human hepatitis A virus (HAV) are unknown. We conducted a targeted search for HAV-related viruses in small mammals sampled globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews. We demonstrate that these viruses share unique biological features with HAV, including structural, genomic, antigenic, and pathogenic properties. We found evidence of major shifts of HAV-related viruses between mammalian hosts in the past, suggesting both an origin of this viral genus in small mammals and a zoonotic origin of human HAV. Our data show that risk assessments for emerging viruses can benefit greatly from the analysis of viral infection patterns that evolved within animal reservoirs
Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as entry site into hepatocytes by hepatitis A and B virus, and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LCMS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of 2 intra-molecular disulfide bridges (7 Cys residues), and a Cysmercaptoethanol adduct formed by treatment with ß-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cysalkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide activated Sepharose. Epitope- excision and - extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides, (5-16) and (17-23) which showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody
Evolutionary origins of hepatitis A virus in small mammals
Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3Dpol sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses
Compensating age-related physical and mental impairments of older drivers by technological measures
Compensating age-related physical and mental impairments of older drivers by technological measures
Hosting Capacity of the Power Grid for Electric Vehicles - A Case Study on a Swedish Low Voltage Grid
Abstract
Hosting capacity (HC) is described as the maximum amount of new production or consumption that can be added to the grid without causing a violation. In this case study, a deterministic approach is used to investigate the HC of electric vehicle (EV) charging in a low-voltage grid, containing 13 detached single-family houses. It investigates how different parameters affect the HC, and what is causing the violation in the grid. Two different performance indices (PI) are used in the study: power cable overloading and voltage drop. The local grid is simulated for one year for four cases and the HC is derived for these. The cases are distinguished by two different violation thresholds for the voltage drop and two different implementation orders of the location of the charging. The results show that the HC of the grid is 6-11 EVs charging simultaneously. The difference in HC is primarily due to variation in the baseload through the year and location of charging. The cable between the substation and the first cable cabinet was the major contributor to the fault, and the PI causing the violation differed depending on what case was used.</jats:p
- …
