694 research outputs found
Obtaining correct orbital ground states in electron systems using a nonspherical self-interaction corrected LDA+ method
The electronic structure of lanthanide and actinide compounds is often
characterized by orbital ordering of localized -electrons.
Density-functional theory (DFT) studies of such systems using the currently
available LDA+ method are plagued by significant orbital-dependent
self-interaction, leading to erroneous orbital ground states. An alternative
scheme that modifies the exchange, not Hartree, energy is proposed as a remedy.
We show that our LDA+ approach reproduces the expected degeneracy of
and states in free ions and the correct ground states in solid PrO.
We expect our method to be useful in studying compounds of - and heavy-
elements.Comment: 11 pages, 4 figure
Orbital Localization and Delocalization Effects in the U 5f^2 Configuration: Impurity Problem
Anderson models, based on quantum chemical studies of the molecule of
U(C_8H_8)_2, are applied to investigate the problem of an U impurity in a
metal. The special point here is that the U 5f-orbitals are divided into two
subsets: an almost completely localized set and a considerably delocalized one.
Due to the crystal field, both localized and delocalized U 5f-orbitals affect
the low-energy physics. A numerical renormalization group study shows that
every fixed point is characterized by a residual local spin and a phase shift.
The latter changes between 0 and \pi/2, which indicates the competition between
two different fixed points. Such a competition between the different local
spins at the fixed points reflects itself in the impurity magnetic
susceptibility at high temperatures. These different features cannot be
obtained if the special characters of U 5f-orbitals are neglected.Comment: 4 pages, REVTeX, email to [email protected]
Circular and linear magnetic birefringences in xenon at nm
The circular and linear magnetic birefringences corresponding to the Faraday
and the Cotton-Mouton effects, respectively, have been measured in xenon at
nm. The experimental setup is based on time dependent magnetic
fields and a high finesse Fabry-Perot cavity. Our value of the Faraday effect
is the first measurement at this wavelength. It is compared to theoretical
predictions. Our uncertainty of a few percent yields an agreement at better
than 1 with the computational estimate when relativistic effects are
taken into account. Concerning the Cotton-Mouton effect, our measurement, the
second ever published at nm, agrees at better than
with theoretical predictions. We also compare our error budget with those
established for other experimental published values
The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain
We study the Kondo effect generated by a single magnetic impurity embedded in
an ultrasmall metallic grain, to be called a ``Kondo box''. We find that the
Kondo resonance is strongly affected when the mean level spacing in the grain
becomes larger than the Kondo temperature, in a way that depends on the parity
of the number of electrons on the grain. We show that the single-electron
tunneling conductance through such a grain features Kondo-induced Fano-type
resonances of measurable size, with an anomalous dependence on temperature and
level spacing.Comment: 4 Latex pages, 4 figures, submitted to Phys. Rev. Let
Alkali and Alkaline Earth Metal Compounds: Core-Valence Basis Sets and Importance of Subvalence Correlation
Core-valence basis sets for the alkali and alkaline earth metals Li, Be, Na,
Mg, K, and Ca are proposed. The basis sets are validated by calculating
spectroscopic constants of a variety of diatomic molecules involving these
elements. Neglect of correlation in K and Ca compounds will lead to
erratic results at best, and chemically nonsensical ones if chalcogens or
halogens are present. The addition of low-exponent functions to the K and
Ca basis sets is essential for smooth convergence of molecular properties.
Inclusion of inner-shell correlation is important for accurate spectroscopic
constants and binding energies of all the compounds. In basis set
extrapolation/convergence calculations, the explicit inclusion of alkali and
alkaline earth metal subvalence correlation at all steps is essential for K and
Ca, strongly recommended for Na, and optional for Li and Mg, while in Be
compounds, an additive treatment in a separate `core correlation' step is
probably sufficient. Consideration of inner-shell correlation energy in
first-row elements requires inclusion of `deep core' correlation
energy in K and Ca for consistency. The latter requires special CCVZ `deep
core correlation' basis sets. For compounds involving Ca bound to
electronegative elements, additional functions in the basis set are
strongly recommended. For optimal basis set convergence in such cases, we
suggest the sequence CV(D+3d)Z, CV(T+2d)Z, CV(Q+)Z, and CV5Z on calcium.Comment: Molecular Physics, in press (W. G. Richards issue); supplementary
material (basis sets in G98 and MOLPRO formats) available at
http://theochem.weizmann.ac.il/web/papers/group12.htm
Photoinduced Gold(I)–Gold(I) Chemical Bonding in Dicyanoaurate Oligomers
Nicht nur σ*σ, sondern auch σ*π: Elektronenstrukturrechnungen zeigen ein σ*σ- und σ*π-Bindungsmuster für AuI–AuI-Bindungen in angeregten Zuständen und legen zwei konformationsabhängige Relaxationsmechanismen für Gold-Dicyano-Oligomere (n=2–5; siehe Bild) in wässriger Lösung nahe. Eine derartige elektronische Struktur der angeregten Zustände könnte auch für andere Goldkomplexe mit einem ähnlichen Goldgerüst relevant sein
Global analysis of data on the spin-orbit coupled and states of Cs2
We present experimentally derived potential curves and spin-orbit interaction
functions for the strongly perturbed and
states of the cesium dimer. The results are based on data from several sources.
Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used
some time ago in the Laboratoire Aim\'{e} Cotton primarily to study the state. More recent work at Tsinghua University provides
information from moderate resolution spectroscopy on the lowest levels of the
states as well as additional high resolution data. From
Innsbruck University, we have precision data obtained with cold Cs
molecules. Recent data from Temple University was obtained using the
optical-optical double resonance polarization spectroscopy technique, and
finally, a group at the University of Latvia has added additional LIF FTS data.
In the Hamiltonian matrix, we have used analytic potentials (the Expanded Morse
Oscillator form) with both finite-difference (FD) coupled-channels and discrete
variable representation (DVR) calculations of the term values. Fitted diagonal
and off-diagonal spin-orbit functions are obtained and compared with {\it ab
initio} results from Temple and Moscow State universities
Ab initio many-body calculations on infinite carbon and boron-nitrogen chains
In this paper we report first-principles calculations on the ground-state
electronic structure of two infinite one-dimensional systems: (a) a chain of
carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield
results were obtained using the restricted Hartree-Fock approach, while the
many-body effects were taken into account by second-order M{\o}ller-Plesset
perturbation theory and the coupled-cluster approach. The calculations were
performed using 6-31 basis sets, including the d-type polarization
functions. Both at the Hartree-Fock (HF) and the correlated levels we find that
the infinite carbon chain exhibits bond alternation with alternating single and
triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In
addition, we also performed density-functional-theory-based local density
approximation (LDA) calculations on the infinite carbon chain using the same
basis set. Our LDA results, in contradiction to our HF and correlated results,
predict a very small bond alternation. Based upon our LDA results for the
carbon chain, which are in agreement with an earlier LDA calculation
calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488
(1998).], we conclude that the LDA significantly underestimates Peierls
distortion. This emphasizes that the inclusion of many-particle effects is very
important for the correct description of Peierls distortion in one-dimensional
systems.Comment: 3 figures (included). To appear in Phys. Rev.
Correlated ab-initio calculations for ground-state properties of II-VI semiconductors
Correlated ab-initio ground-state calculations, using relativistic
energy-consistent pseudopotentials, are performed for six II-VI semiconductors.
Valence () correlations are evaluated using the coupled cluster approach
with single and double excitations. An incremental scheme is applied based on
correlation contributions of localized bond orbitals and of pairs and triples
of such bonds. In view of the high polarity of the bonds in II-VI compounds, we
examine both, ionic and covalent embedding schemes for the calculation of
individual bond increments. Also, a partitioning of the correlation energy
according to local ionic increments is tested. Core-valence ()
correlation effects are taken into account via a core-polarization potential.
Combining the results at the correlated level with corresponding Hartree-Fock
data we recover about 94% of the experimental cohesive energies; lattice
constants are accurate to \sim 1%; bulk moduli are on average 10% too large
compared with experiment.Comment: 10 pages, twocolumn, RevTex, 3 figures, accepted Phys. Rev.
Ground-state properties of rutile: electron-correlation effects
Electron-correlation effects on cohesive energy, lattice constant and bulk
compressibility of rutile are calculated using an ab-initio scheme. A
competition between the two groups of partially covalent Ti-O bonds is the
reason that the correlation energy does not change linearly with deviations
from the equilibrium geometry, but is dominated by quadratic terms instead. As
a consequence, the Hartree-Fock lattice constants are close to the experimental
ones, while the compressibility is strongly renormalized by electronic
correlations.Comment: 1 figure to appear in Phys. Rev.
- …