14 research outputs found

    EVALUATION OF HEAT TRANSFER RATE AND THEIR EFFECTS IN SPHERICAL PRESSURE VESSELS SUBJECTED TO INTERNAL PRESSURE

    Get PDF
    This paper investigates the various stresses in a spherical pressure vessel which are subjected to pressure. By determining the strains and stress concentration in a vessel, overall performance of the system can be improved with the selection of suitable material. Thermal analysis is carried out to determine the deformations at various points. An improvement in the performance is achieved by using the computational analysis software ANSYS CFX and the comparative tool DOT NET software. By considering various materials, variation in the dimensions, stresses, strains and heat transfer within the system are discusse

    REVIEW OF TOPICAL ENLARGEMENT IN LASER BEAM MACHINING

    Get PDF
    Laser beam technology is a standout amongst the most generally utilized warm vitality based non-contact sort progress machining process which can be connected for entire scope of materials. The cost of slicing hand-to-machine materials by customary mechanical machining procedures is high because of the low material expulsion rate and short device life, and a few materials are unrealistic to be cut by the traditional machining process. Laser beam/pillar is focused for softening and vaporizing the undesirable material from the parent material. It is reasonable for geometrically complex profile cutting and making smaller than usual openings in sheet metal. It gives portability to natives and cargo, among the locales of Europe and past, while being a motor for monetary development and employments. It is accordingly critical that development is accomplished in a feasible way, thinking about wellbeing and security worries and additionally unfriendly atmosphere pertinent and ecological impacts. Lasers are generally utilized as a part of assembling, correspondence, estimation and restorative. Vitality thickness of the laser beam/pillar can be adjusted by fluctuating the wavelength. This property has made the lasers capable for expelling to a great degree little measure of material and has prompted the utilization of lasers to produce little elements in work section constituents. The basic investigation of different hypothetical and exploratory reviews is utilized to portray the execution of laser pillar miniaturized scale machining on a portion of the propelled manufacturing materials. This paper gives a survey on the different research activities done in laser beam technology. The substance of paper contains a concise presentation of recent development in laser beam and its improvement

    Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite

    Get PDF
    In this work, the characteristics of a vegetable fibre (luffa cylindrica) polyester composite are studied as a function of fibre surface treatment (with NaOH, Ca(OH)2 and silane) and fibre content (30%, 40% and 50%). Composites were prepared through compression moulding and characterized with thermogravimetric and dynamic-mechanical analyses. Higher storage modulus was obtained with Ca(OH)2 treated composites, reaching nearly 70% increase. Higher loss modulus (E”) was noted in for silane treated fibre (at 50%) and a high peak in damping factor was noted for Ca(OH)2 treated fibre (at 50%). Cole-cole plot showed highest homogeneity for the Ca(OH)2 treated composites. Electron microscopy revealed the fracture modes in static tested composites. The general properties obtained indicate that the composites can only be used for low loading applications

    Investigation into the End-Milling Parameters of Mg/B<sub>4</sub>C Metal Matrix Composites

    No full text
    The automotive, biomedical, and aerospace industries are attracted towards magnesium-based alloys and composites because they are among the lightest structural materials available and have significantly enhanced mechanical and physical characteristics. When it comes to precision and functional requirements, such materials need to be machined. The aim of this study was to investigate the machinability behavior of Mg/B4C metal matrix composite (MMC) through end-milling experiments. Different deformation behaviors of the composite were studied by varying the volume percentage of B4C reinforcement between 5% and 10%. Using a milling tool dynamometer, the cutting forces on the tool were examined for various milling parameters. Moreover, Talysurf roughness was used to analyze the machined surface under each cutting parameter, and scanning electron microscopy was used to study the chips produced under different cutting conditions
    corecore