80 research outputs found
A Common Anterior Insula Representation of Disgust Observation, Experience and Imagination Shows Divergent Functional Connectivity Pathways
Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted (b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities, suggesting why observing, imagining and experiencing an emotion feels so different
Interoception in anxiety and depression
We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states
Kinetics of the peritectic phase transformation: in-situ measurements and phase field modeling
An experimental study has been conducted into the role of cooling rate on the kinetics of the peritectic phase transformation in a Fe-C alloy. The interfacial growth velocities of the peritectic phase transformation were measured in situ for cooling rates of 100, 50, and 10 K/min. In-situ observations were obtained using high-temperature laser scanning confocal microscopy (HTLSCM) in a concentric solidification configuration. The experimentally measured interface velocities of the liquid/austenite (L/γ) and austenite/delta-ferrite (γ/δ) interphase boundaries were observed to increase with higher cooling rates. A unique finding of this study was that as the cooling rate increased, there was a transition point where the L/γ interface propagated at a higher velocity than the γ/δ interface, contrary to the findings of previous researchers. Phase field modeling was conducted using a commercial multicomponent, multiphase package. Good correlation was obtained between model predictions and experimental observations in absolute values of interface velocities and the effect of cooling rate. Analysis of the simulated microsegregation in front of the L/γ and γ/δ interfaces as a function of cooling rate revealed the importance of solute pileup. This microsegregation plays a pivotal role in the propagation of interfaces; thus, earlier modeling work in which complete diffusion in the liquid phase was assumed cannot fully describe the rate of propagation of the L/γ and δ/γ interfaces during the course of the peritectic transformation
- …