458 research outputs found
Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
We study the effect of randomness and anisotropy on Turing patterns in
reaction-diffusion systems. For this purpose, the Gierer-Meinhardt model of
pattern formation is considered. The cases we study are: (i)randomness in the
underlying lattice structure, (ii)the case in which there is a probablity p
that at a lattice site both reaction and diffusion occur, otherwise there is
only diffusion and lastly, the effect of (iii) anisotropic and (iv) random
diffusion coefficients on the formation of Turing patterns. The general
conclusion is that the Turing mechanism of pattern formation is fairly robust
in the presence of randomness and anisotropy.Comment: 11 pages LaTeX, 14 postscript figures, accepted in Phys. Rev.
Submillimeter spectroscopy of southern hot cores: NGC6334(I) and G327.3-0.6
High-mass star-forming regions are known to have a rich molecular spectrum
from many species. Some of the very highly excited lines are emitted from very
hot and dense gas close to the central object(s). The physics and chemistry of
the inner cores of two high mass star forming regions, NGC6334(I) and
G327.3-0.6, shall be characterized. Submillimeter line surveys with the APEX
telescope provide spectra which sample many molecular lines at high excitation
stages. Partial spectral surveys were obtained, the lines were identified,
physical parameters were determined through fitting of the spectra. Both
sources show similar spectra that are comparable to that of the only other high
mass star forming region ever surveyed in this frequency range}, Orion-KL, but
with an even higher line density. Evidence for very compact, very hot sources
is found.Comment: APEX A&A special issue, accepte
CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy
We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a
10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI
observations we create a total gas surface density map, Sigma_gas, for NGC
6946. The predominantly molecular inner gas disk transitions smoothly into an
atomic outer gas disk, with equivalent atomic and molecular gas surface
densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9
Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the
dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the
CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by
very high ratio, >1, gas. The very high ratios are predominantly from interarm
regions and appear to indicate the presence of wide-spread optically thin gas.
Star formation tracers are better correlated with the total neutral gas disk
than with the molecular gas by itself implying SFR is proportional to
Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star
formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which
is relatively uniform across the disk. The high star formation rate at the
nucleus appears to be due to a large accumulation of molecular gas rather than
a large increase in the star formation efficiency. The mid-plane gas pressure
in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the
radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is
a factor for the formation of molecular clouds, these outer HI gas arms should
contain molecular gas which we do not see because they are beyond our detection
limit
Photodissociation regions and star formation in the Carina Nebula
We have obtained wide-field thermal infrared (IR) images of the Carina
Nebula, using the SPIREX/Abu telescope at the South Pole. Emission from
poly-cyclic aromatic hydrocarbons (PAHs) at 3.29um, a tracer of
photodissociation regions (PDRs), reveals many interesting well defined clumps
and diffuse regions throughout the complex. Near-IR images (1--2um), along with
images from the Midcourse Space Experiment (MSX) satellite (8--21um) were
incorporated to study the interactions between the young stars and the
surrounding molecular cloud in more detail. Two new PAH emission clumps have
been identified in the Keyhole Nebula and were mapped in 12CO(2--1) and (1--0)
using the SEST. Analysis of their physical properties reveals they are dense
molecular clumps, externally heated with PDRs on their surfaces and supported
by external pressure in a similar manner to the other clumps in the region. A
previously identified externally heated globule containing IRAS 10430-5931 in
the southern molecular cloud, shows strong 3.29-, 8- and 21-um emission, the
spectral energy distribution (SED) revealing the location of an ultra-compact
(UC) HII region. The northern part of the nebula is complicated, with PAH
emission inter-mixed with mid-IR dust continuum emission. Several point sources
are located here and through a two-component black-body fit to their SEDs, we
have identified 3 possible UC HII regions as well as a young star surrounded by
a circumstellar disc. This implies that star formation in this region is
on-going and not halted by the intense radiation from the surrounding young
massive stars.Comment: 14 pages, 12 figures. Accepted by MNRAS. Higher resolution figures
available at http://www.phys.unsw.edu.au/~jmr/papers.htm
Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system
We both show experimentally and numerically that the time scales separation
introduced by long range activation can induce oscillations and excitability in
nonequilibrium reaction-diffusion systems that would otherwise only exhibit
bistability. Namely, we show that the Chlorite-Tetrathionate reaction, where
autocatalytic species diffuses faster than the substrates, the spatial
bistability domain in the nonequilibrium phase diagram is extended with
oscillatory and excitability domains. A simple model and a more realistic model
qualitatively account for the observed behavior. The latter model provides
quantitative agreement with the experiments.Comment: 19 pages + 9 figure
Turing Instability in a Boundary-fed System
The formation of localized structures in the chlorine dioxide-idodine-malonic
acid (CDIMA) reaction-diffusion system is investigated numerically using a
realistic model of this system. We analyze the one-dimensional patterns formed
along the gradients imposed by boundary feeds, and study their linear stability
to symmetry-breaking perturbations (Turing instability) in the plane transverse
to these gradients. We establish that an often-invoked simple local linear
analysis which neglects longitudinal diffusion is inappropriate for predicting
the linear stability of these patterns. Using a fully nonuniform analysis, we
investigate the structure of the patterns formed along the gradients and their
stability to transverse Turing pattern formation as a function of the values of
two control parameters: the malonic acid feed concentration and the size of the
reactor in the dimension along the gradients. The results from this
investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review
Water emission in NGC1333-IRAS4: The physical structure of the envelope
We report ISO-LWS far infrared observations of CO, water and oxygen lines
towards the protobinary system IRAS4 in the NGC1333 cloud. We detected several
water, OH, CO rotational lines, and two [OI] and [CII] fine structure lines.
Given the relatively poor spectral and spatial resolution of these
observations, assessing the origin of the observed emission is not
straightforward. In this paper, we focus on the water line emission and explore
the hypothesis that it originates in the envelopes that surround the two
protostars, IRAS4 A and B, thanks to an accurate model. The model reproduces
quite well the observed water line fluxes, predicting a density profile, mass
accretion rate, central mass, and water abundance profile in agreement with
previous works. We hence conclude that the emission from the envelopes is a
viable explanation for the observed water emission, although we cannot totally
rule out the alternative that the observed water emission originates in the
outflow
The puzzling detection of D_2CO in the molecular cloud L1689N
We present new observations of the D_2CO emission towards the small cloud L1689N in the ρ Ophiuchus complex. We surveyed five positions, three being a cut across a shock site and two probing the quiescent gas of the molecular cloud. We detected D_2CO emission in the first three positions. The measured [D_2CO] /[ H2CO] is about 3%, whereas it is ≤2% in the quiescent gas. We discuss the implications of these new observations, which suggest that the bulk of the D_2CO molecules is stored in grain mantles, and removed from the cold storage by the shock at the interface between the outflowing and quiescent gas. We review the predictions of the published models proposed to explain the observed high deuteration of formaldehyde. They fall in two basic schemes: gas phase and grain surface chemistry. None of the reviewed models is able to account for the observed [D_2CO] /[H_2CO] abundance ratio. A common characteristics shared by the models is apparently that all underestimate the atomic [D]/[H] ratio in the accreting gas
- …
