178 research outputs found
Sensitivity analysis of dynamic cell formation problem through meta-heuristic
In spite of many researches in literature investigating dynamic of cell formation (CF) problem, further research needs to be elaborated to assay hidden aspects of cellular manufacturing system (CMS), due to inherent complexity and uncertainty on optimizing this problem. In this paper, sensitivity analysis of modified self-adaptive differential evolution (MSDE) algorithm is proposed for basic parameters of CF problem, considering to the graphical representation supported by statistical analysis. Hence, a dynamic integer model of CF problem is first presented as the NP-hard problem. Then, the two basic test CF problems are introduced thereby the performance of MSDE algorithm assessed by diverse problems sizes through 140 runs from aspects of the average runtime of algorithm and the best local optimum objective function. Finally, statistical analysis is implemented on behavior of objective function values in order to validate our computational results graphically as well as statistically, giving some insights related to importance of CF parameters on designing CMS
Recommended from our members
Managing Sociotechnical Complexity in Engineering Design Projects
Design project management is witnessing an increasing need for practitioners to rely on tools that reflect the integrated nature of the social and technical characteristics of design processes, as opposed to considering the two as separate concepts. For practitioners, this integration has the potential value of predicting the future behavior of design processes by allowing them to understand what task to do next, whom to assign a task given the availability of resource, and the levels of knowledge and expertise required. In response to these challenges, this paper contributes to the development of a new process modeling method, called actor-based signposting (ABS), that looks at the early stages of the product development processes from the perspective of integrated sociotechnical systems. The objective is to support managers and decision-makers on both typical planning issues, such as scheduling and resource allocation, and less conventional issues relating to the organizational planning of a design project, such as identification of criticalities, matching required skills and expertise, and factors of influence. Ultimately, the aim is to support organizations to be more adaptive in responding to change and uncertainty. Two case studies in the automotive and aerospace industries with different properties and modeling objectives were selected to demonstrate the utility of the proposed method. Experimental analysis of these cases led to a range of insights regarding the future of modeling for academia as well as the decision-making capabilities for managers and practitioners.</jats:p
Two decades apart and looking forward – exploring rigour in reporting on research in the engineering design research community
The engineering design research community is engaged in a long-standing and lively debate about what defines design as a uniquefield of research. This includes a discourse on a rigorous way of con-ducting research through various academic outlets germane to thecommunity. This paper explores the current state of rigour in report-ing engineering design research by analysing the proceedings of tworecent ICED conferences and comparing the results with those ofan identical analysis of an equivalent set of ICED proceedings pub-lished exactly 20 years earlier. A lack of such rigour ultimately permitslower quality work to prevail as it sets poor examples for youngresearchers and affects credibility and trustworthiness of the field.The data shows the significant improvements made and identifiespotential areas to address. By establishing the current state of rigourin reporting considered acceptable in the community for one of itsmain conferences and how this has evolved, the paper allows us toinfer trajectory and formulate concrete recommendations for furtherimprovement
Data-driven design: The new challenges of digitalization on product design and development
Digitalization and the momentous role being assumed by data are commonly viewed as pervasive phenomena whose impact is felt in all aspects of society and the economy. Design activity is by no means immune from this trend, and the relationship between digitalization and design is decades old. However, what is the current impact of this 'data revolution' on design? How will the design activity change? What are the resulting research questions of interest to academics? What are the main challenges for firms and for educational institutions having to cope with this change? The paper provides a comprehensive conceptual framework, based on recent literature and anecdotal evidence from the industry. It identifies three main streams: namely the consequences on designers, the consequences on design processes and the role of methods for data analytics. In turn, these three streams lead to implications at individual, organizational and managerial level, and several questions arise worthy of defining future research agendas. Moreover, the paper introduces relational diagrams depicting the interactions between the objects and the actors involved in the design process and suggests that what is occurring is by no means a simple evolution but a paradigmatic shift in the way artefacts are designed
Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications
This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass via a tri-reforming process which involves a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane. Typical biomass-derived syngas H2:CO is 1:1 and contains tars that deactivate FT catalyst. This innovation allows for cost-effective one-step production of syngas in the required H2:CO of 2:1 with reduction of tars for use in the FTS. To maximize the performance of the tri-reforming catalyst, an attempt to control oxygen mobility, thermal stability, dispersion of metal, resistance to coke formation, and strength of metal interaction with support is investigated by varying catalyst synthesis parameters. These synthesis variables include Ce and Zr mixed oxide support ratios, amount Mg and Ni loading, and the preparation of the catalyst. Reaction conditions were also varied to determine the influences reaction temperature, gas composition, and GHSV have on the catalyst performance. Testing under controlled reaction conditions and the use of several catalyst characterization techniques (BET, XRD, TPR, XAFS, SEM-EDS, XPS) were employed to better explain the effects of the synthesis parameters. Applications of the resulting data were used to design proof of concept solar powered BTL plant. This paper highlights the performance of the tri-reforming catalyst under various reaction conditions and explains results using catalyst characterization
Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress
It is well known that plant responses to stress involve different events occurring at different places of the cell/leaf and at different time scales in relation with the plant development. In fact, the organelles proteomes include a wide range of proteins that could include a wide range of proteins showing a considerable change in cellular functions and metabolism process. On this basis, a comparative proteomics analysis and fluorescence induction measurements were performed to investigate the photosynthetic performance and the relative thylakoid proteome variation in Eutrema salsugineum cultivated under salt stress (200 mM NaCl), water deficit stress (PEG) and combined treatment (PEG + NaCl) as a hyperosmotic stress. The obtained results showed a significant decrease of plant growth under drought stress conditions, with the appearance of some toxicity symptoms, especially in plants subjected to combined treatment. Application of salt or water stress alone showed no apparent change in the chlorophyll a fluorescence transients, primary photochemistry (fluorescence kinetics of the O-J phase), the PQ pool state (J-I phase changes), (Fv/Fm) and (Fk/Fj) ratios. However, a considerable decrease of all these parameters was observed under severe osmotic stress (PEG + NaCl). The thylakoid proteome analysis revealed 58 proteins showing a significant variation in their abundance between treatments (up or down regulation). The combined treatment (PEG + NaCl) induced a decrease in the expression of the whole PSII core subunit (D1, D2, CP43, CP47, PsbE and PsbH), whereas the OEC subunits proteins remained constant. An increase in the amount of PsaD, PsaE, PsaF, PsaH, PsaK and PsaN was detected under drought stress (PEG5%). No significant change in the accumulation of Cyt b6 and Cyt f was observed. Some regulated proteins involved in cellular redox homeostasis were detected (glutamine synthetase, phosphoglycerate kinase, transketolase), and showed a significant decrease under the combined treatment. Some oxidative stress related proteins were significantly up-regulated under salt or drought stress and could play a crucial role in the PSI photoprotection and the control of ROS production level
Characterisation of Refined Marc Distillates with Alternative Oak Products Using Different Analytical Approaches
The use of oak barrel alternatives, including oak chips, oak staves and oak powder, is quite common in the production of spirits obtained from the distillation of vegetal fermented products such as grape pomace. This work explored the use of unconventional wood formats such as peeled and sliced wood. The use of poplar wood was also evaluated to verify its technological uses to produce aged spirits. To this aim, GC-MS analyses were carried out to obtain an aromatic characterisation of experimental distillates treated with these products. Moreover, the same spirits were studied for classification purposes using NMR, NIR and e-nose. A significant change in the original composition of grape pomace distillate due to sorption phenomena was observed; the intensity of this effect was greater for poplar wood. The release of aroma compounds from wood depended both on the toasting level and wood assortment. Higher levels of xylovolatiles, namely, whisky lactone, were measured in samples aged using sliced woods. Both the NIR and NMR analyses highlighted similarities among samples refined with oak tablets, differentiating them from the other wood types. Finally, E-nose seemed to be a promising alternative to spectroscopic methods both for the simplicity of sample preparation and method portability
Rational positioning of 3D printed micro-bricks to realize high-fidelity, multi-functional soft-hard interfaces
peer reviewedLiving organisms have developed design principles, such as functional gradients (FGs), to interface hard materials with soft ones (e.g., bone and tendon). Mimicking such design principles can address the challenges faced when developing engineered constructs with soft-hard interfaces. To date, implementing these FG design principles has been primarily performed by varying the ratio of the hard phase to that of the soft phase. Such design approaches, however, lead to inaccurate mechanical properties within the transition zone. That is due to the highly nonlinear relationship between the material distribution at the microscale and the macroscale mechanical properties. Here, we 3D print micro-bricks from either a soft or a hard phase and study the nonlinear relationship between their arrangements within the transition zone and the resulting macroscale properties. We carry out experiments at the micro- and macroscales as well as finite element simulations at both scales. Based on the obtained results, we develop a co-continuous power-law model relating the arrangement of the micro-bricks to the local mechanical properties of the micro-brick composites. We then use this model to rationally design FGs at the individual micro-brick level and create two types of biomimetic soft-hard constructs, including a specimen modeling bone-ligament junctions in the knee and another modeling the nucleus pulposus-annulus fibrosus interface in intervertebral discs. We show that the implemented FGs drastically enhance the stiffness, strength, and toughness of both types of specimens as compared to non-graded designs. Furthermore, we hypothesize that our soft-hard FGs regulate the behavior of murine preosteoblasts and primary human bone marrow-derived mesenchymal stromal cells (hBMSCc). We culture those cells to confirm the effects of soft-hard interfaces on cell morphology as well as on regulating the expression of focal adhesion kinase, subcellular localization, and YAP nuclear translocation of hBMSCs. Taken together, our results pave the way for the rational design of soft-hard interfaces at the micro-brick level and (biomedical) applications of such designs
- …