27,779 research outputs found
Preface "Nonlinear processes in oceanic and atmospheric flows"
Nonlinear phenomena are essential ingredients in many oceanic and atmospheric
processes, and successful understanding of them benefits from multidisciplinary
collaboration between oceanographers, meteorologists, physicists and
mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic
and Atmospheric Flows'' contains selected contributions from attendants to the
workshop which, in the above spirit, was held in Castro Urdiales, Spain, in
July 2008. Here we summarize the Special Issue contributions, which include
papers on the characterization of ocean transport in the Lagrangian and in the
Eulerian frameworks, generation and variability of jets and waves, interactions
of fluid flow with plankton dynamics or heavy drops, scaling in meteorological
fields, and statistical properties of El Ni\~no Southern Oscillation.Comment: This is the introductory article to a Special Issue on "Nonlinear
Processes in Oceanic and Atmospheric Flows'', published in the journal
Nonlinear Processes in Geophysics, where the different contributions are
summarized. The Special Issue itself is freely available from
http://www.nonlin-processes-geophys.net/special_issue103.htm
Biological activity in the wake of an island close to a coastal upwelling
Hydrodynamic forcing plays an important role in shaping the dynamics of
marine organisms, in particular of plankton. In this work we study the
planktonic biological activity in the wake of an island which is close to an
upwelling region. Our research is based on numerical analysis of a kinematic
flow mimicking the hydrodynamics in the wake, coupled to a three-component
plankton model. Depending on model parameters different phenomena are
described: a) The lack of transport of nutrients and plankton across the wake,
so that the influence of upwelling on primary production on the other side of
the wake is blocked. b) For sufficiently high vorticity, the role of the wake
in facilitating this transport and leading to an enhancement of primary
production. Finally c) we show that under certain conditions the interplay
between wake structures and biological growth leads to plankton blooms inside
mesoscale hydrodynamic vortices that act as incubators of primary production.Comment: 42 pages, 9 figure
Minimal mechanisms for vegetation patterns in semiarid regions
The minimal ecological requirements for formation of regular vegetation
patterns in semiarid systems have been recently questioned. Against the general
belief that a combination of facilitative and competitive interactions is
necessary, recent theoretical studies suggest that, under broad conditions,
nonlocal competition among plants alone may induce patterns. In this paper, we
review results along this line, presenting a series of models that yield
spatial patterns when finite-range competition is the only driving force. A
preliminary derivation of this type of model from a more detailed one that
considers water-biomass dynamics is also presented. Keywords: Vegetation
patterns, nonlocal interactionsComment: 8 pages, 4 figure
Plankton blooms in vortices: The role of biological and hydrodynamic time scales
We study the interplay of hydrodynamic mesoscale structures and the growth of
plankton in the wake of an island, and its interaction with a coastal
upwelling. Our focus is on a mechanism for the emergence of localized plankton
blooms in vortices. Using a coupled system of a kinematic flow mimicking the
mesoscale structures behind the island and a simple three component model for
the marine ecosystem, we show that the long residence times of nutrients and
plankton in the vicinity of the island and the confinement of plankton within
vortices are key factors for the appearance of localized plankton bloomsComment: 29 pages, 9 figure
Spin-orbit transitions in and -CoVO
-triclinic and -monoclinic polymorphs of CoVO are
two of the few known transition metal ion based materials that display stepped
magnetization plateaus at low temperatures. Neutron diffraction [M.
Markkula et al. Phys. Rev. B 86, 134401 (2012)], x-ray dichroism [N. Hollmann
et al. Phys. Rev. B 89, 201101(R) (2014)], and dielectric measurements [K.
Singh et al. J. Mater. Chem. 22, 6436 (2012)] have shown a coupling between
orbital, magnetic and structural orders in CoVO. We apply neutron
inelastic scattering to investigate this coupling by measuring the spin-orbit
transitions in both and polymorphs. We find the spin-exchange
and anisotropy in monoclinic -CoVO to be weak in comparison
with the spin-orbit coupling and estimate an upper limit of
0.05. However, the spin exchange is larger in the triclinic
polymorph and we suggest the excitations are predominately two dimensional. The
local compression of the octahedra surrounding the Co ion results in a
direct coupling between higher energy orbital levels, the magnetic ground
state, and elastic strain. CoVO is therefore an example where the
local distortion along with the spin-orbit coupling provides a means of
intertwining structural and magnetic properties. We finish the paper by
investigating the low-energy magnetic fluctuations within the ground state
doublet and report a magnetic excitation that is independent of the local
crystalline electric field. We characterize the temperature and momentum
dependence of these excitations and discuss possible connections to the
magnetization plateaus.Comment: (15 pages, 10 figures
Exploring the dimming event of RW Aur A through multi-epoch VLT/X-Shooter spectroscopy
RW Aur A is a CTTS that has suddenly undergone three major dimming events
since 2010. We aim to understand the dimming properties, examine accretion
variability, and derive the physical properties of the inner disc traced by the
CO ro-vibrational emission at NIR wavelengths (2.3 mic).
We compared two epochs of X-Shooter observations, during and after the
dimming. We modelled the rarely detected CO bandhead emission in both epochs to
examine whether the inner disc properties had changed. The SED was used to
derive the extinction properties of the dimmed spectrum and compare the
infrared excess between the two epochs. Lines tracing accretion were used to
derive the mass accretion rate in both states. The CO originates from a region
with physical properties of T=3000 K, N=1x10 cm and
vsini=113 km/s. The extinction properties of the dimming layer were derived
with the effective optical depth ranging from teff 2.5-1.5 from the UV to the
NIR. The inferred mass accretion rate Macc is Msun/yr and Msun/yr after and during the dimming respectively. By fitting the
SED, additional emission is observed in the IR during the dimming event from
dust grains with temperatures of 500-700K. The physical conditions traced by
the CO are similar for both epochs, indicating that the inner gaseous disc
properties do not change during the dimming events. The extinction curve is
flatter than that of the ISM, and large grains of a few hundred microns are
thus required. When we correct for the observed extinction, Macc is constant in
the two epochs, suggesting that the accretion is stable and therefore does not
cause the dimming. The additional hot emission in the NIR is located at about
0.5 au from the star. The dimming events could be due to a dust-laden wind, a
severe puffing-up of the inner rim, or a perturbation caused by the recent
star-disc encounter.Comment: Accepted by Astronomy & Astrophysic
Implications of a Sub-Threshold Resonance for Stellar Beryllium Depletion
Abundance measurements of the light elements lithium, beryllium, and boron
are playing an increasingly important role in the study of stellar physics.
Because these elements are easily destroyed in stars at temperatures 2--4
million K, the abundances in the surface convective zone are diagnostics of the
star's internal workings. Standard stellar models cannot explain depletion
patterns observed in low mass stars, and so are not accounting for all the
relevant physical processes. These processes have important implications for
stellar evolution and primordial lithium production in big bang
nucleosynthesis. Because beryllium is destroyed at slightly higher temperatures
than lithium, observations of both light elements can differentiate between the
various proposed depletion mechanisms. Unfortunately, the reaction rate for the
main destruction channel, 9Be(p,alpha)6Li, is uncertain. A level in the
compound nucleus 10B is only 25.7 keV below the reaction's energetic threshold.
The angular momentum and parity of this level are not well known; current
estimates indicate that the resonance entrance channel is either s- or d-wave.
We show that an s-wave resonance can easily increase the reaction rate by an
order of magnitude at temperatures of approximately 4 million K. Observations
of sub-solar mass stars can constrain the strength of the resonance, as can
experimental measurements at lab energies lower than 30 keV.Comment: 9 pages, 1 ps figure, uses AASTeX macros and epsfig.sty. Reference
added, typos corrected. To appear in ApJ, 10 March 199
Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals
Defect cavities in 3D photonic crystal can trap and store light in the
smallest volumes allowable in dielectric materials, enhancing non-linearities
and cavity QED effects. Here, we study inverse rod-connected diamond (RCD)
crystals containing point defect cavities using plane-wave expansion and
finite-difference time domain methods. By optimizing the dimensions of the
crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then
be engineered by introducing point defects in the crystal. We investigate a
variety of single spherical defects at different locations in the unit cell
focusing on high-refractive-index contrast (3.3:1) inverse RCD structures;
quality factors (Q-factors) and mode volumes of the resonant cavity modes are
calculated. By choosing a symmetric arrangement, consisting of a single sphere
defect located at the center of a tetrahedral arrangement, mode volumes < 0.06
cubic wavelengths are obtained, a record for high index cavities.Comment: 7 pages, 8 figure
- …
