18 research outputs found

    Nuclear target search at the single molecule level: protein interactions define the exploration landscape

    Get PDF
    Gene regulation relies on highly mobile transcription factors (TFs) exploring the nucleoplasm in search of their targets. Our view of the nucleus has evolved from that of an isotropic and homogenous reactor to that of a highly organized yet very dynamic organelle. However important questions remain on how these regulatory factors explore the nuclear environment in search of their DNA or protein targets, and how their exploration strategy affects the kinetics of transcriptional regulation. We implemented a single-molecule tracking assay to determine the TFs dynamics using photoactivatable tags in human cells. We investigated the mobility of several nuclear proteins, including the transcription factor c-Myc and the elongation factor P-TEFb. We found that, while their diffusion speed was comparable, these proteins largely differed in terms of their exploration geometry. We discovered that c-Myc is a global explorer diffusing in the nucleus without spatial constraints. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment, constrained by a fractal nuclear architecture. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. We also measured the mobility of a P-TEFb mutant in which the interaction with the CTD of the RNA Pol II was truncated. In this case, the single-molecule experiments suggested a global exploration of the P-TEFb mutant, consistent with free diffusion. Our observations are in line with a model in which the exploration geometry of TFs is constrained by their interactions and not by exclusion properties. Our findings have strong implications on how proteins react in the nucleus and how their function can be regulated in space and time

    Dipole source analysis of auditory P300 response in depressive and anxiety disorders

    Get PDF
    This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies

    Event-related potential studies of post-traumatic stress disorder: a critical review and synthesis

    Get PDF
    Despite the sparseness of the currently available data, there is accumulating evidence of information processing impairment in post-traumatic stress disorder (PTSD). Studies of event-related potentials (ERPs) are the main tool in real time examination of information processing. In this paper, we sought to critically review the ERP evidence of information processing abnormalities in patients with PTSD. We also examined the evidence supporting the existence of a relationship between ERP abnormalities and symptom profiles or severity in PTSD patients. An extensive Medline search was performed. Keywords included PTSD or post-traumatic stress disorder, electrophysiology or EEG, electrophysiology, P50, P100, N100, P2, P200, P3, P300, sensory gating, CNV (contingent negative variation) and MMN (mismatch negativity). We limited the review to ERP adult human studies with control groups which were reported in the English language. After applying our inclusion-exclusion review criteria, 36 studies were included. Subjects exposed to wide ranges of military and civilian traumas were studied in these reports. Presented stimuli were both auditory and visual. The most widely studied components included P300, P50 gating, N100 and P200. Most of the studies reported increased P300 response to trauma-related stimuli in PTSD patients. A smaller group of studies reported dampening of responses or no change in responses to trauma-related and/or unrelated stimuli. P50 studies were strongly suggestive of impaired gating in patients with PTSD. In conclusion, the majority of reports support evidence of information processing abnormalities in patients with PTSD diagnosis. The predominance of evidence suggests presence of mid-latency and late ERP components differences in PTSD patients in comparison to healthy controls. Heterogeneity of assessment methods used contributes to difficulties in reaching firm conclusions regarding the nature of these differences. We suggest that future ERP-PTSD studies utilize standardized assessment scales that provide detailed information regarding the symptom clusters and the degree of symptom severity. This would allow assessment of electrophysiological indices-clinical symptoms relationships. Based on the available data, we suggest that ERP abnormalities in PTSD are possibly affected by the level of illness severity. If supported by future research, ERP studies may be used for both initial assessment and treatment follow-up
    corecore