563 research outputs found
Critical Analysis of the GreenMetric World University Ranking System: The Issue of Comparability
The Universitas Indonesia GreenMetric World Ranking is the most widely adopted system nowadays to rank worldwide universities' sustainability. The number of participating universities has consistently increased throughout the last decade. An in-depth analysis of this ranking system is made to assess how sustainability in universities is measured through specific indicators. Specifically, based on expert knowledge, common logic and the scientific literature, these indicators are assessed with respect to whether they can be used to fairly quantify and rank worldwide universities' sustainability development. Some indicators proposed by the ranking system, such as the number of renewable energy sources on campus and the number of various types of programs for sustainable development, were found to be unable to measure any sustainability development effectively and fairly. Many others, such as the opted sewage disposal modality, the percentage of university budget for sustainability efforts and the ratio of sustainability research funding to total research funding, were found to need adjustment to account for context-specific factors such as availability of renewable energy sources, weather, landscape, original construction and the cultural habits of the enrolled people. Taking into account these considerations, a fairer evaluation and comparison of universities' sustainability could be achieved which provides universities with information on how to effectively improve their sustainability
Mechanical properties of thermally-treated and recycled glass fibres
This paper investigates the effects of temperature, heating time and atmosphere on the tensile modulus and strength of thermally-treated E-glass fibres. The heating conditions that were investigated are identical to those used in thermal recycling of waste polymer matrix composite materials, and therefore this study determines the effects of the recycling process conditions on the properties of reclaimed fibreglass. The loss in fibre strength is dependent on the temperature and time of the thermal process, and large strength loss occurs under the heating conditions used for high temperature incineration of polymer composites. A phenomenological model is presented for the residual fibre strength for the temperatures and heating time of the thermal recycling process. The reduction in fibre strength is dependent on the thermal recycling atmosphere under low temperature or short heating time conditions, but at high temperatures the strength loss is the same, regardless of furnace atmosphere (ambient air, dry air or inert gas). Quantitative fractographic analysis of the fibres shows that fracture for all heat treatments is caused by surface flaws. The strength loss is most probably due to structural relaxation during thermal annealing and a secondary effect of adsorbed surface water attacking the glass by thermally-activated stress-corrosion. It is shown that large reductions in fibre strength due to thermal recycling are not recovered during composite manufacture, therefore resulting in composite materials with significantly lower strength. The reduced strength of the composite matches the reduced fibre strength following thermal recycling
Experimental investigation of paraffin-based fuels for hybrid rocket propulsion
Solid fuels for hybrid rockets were characterized in the framework of a research project aimed to develop a new generation of solid fuels, combining at the same time good mechanical and ballistic properties. Original techniques were implemented in order to improve paraffin-based fuels. The first strengthening technique involves the use of a polyurethane foam (PUF); a second technique is based on thermoplastic polymers mixed at molecular level with the paraffin binder. A ballistic characterization of paraffin-based hybrid rocket solid fuels was performed, considering pure wax-based fuels and fuels doped with suitable metal additives. Nano-Al powders and metal hydrides (magnesium hydride (MgH2), lithium aluminum hydride (LiAlH4 )) were used as fillers in paraffin matrices. The results of this investigation show a strong correlation between the measured viscosity of the melted paraffin layer and the regression rate: a decrease of viscosity increases the regression rate. This trend is due to the increasing development of entrainment phenomena, which strongly increase the regression rate. Addition of LiAlH4 (mass fraction 10%) can further increase the regression rate up to 378% with respect to the pure HTPB regression rate, taken as baseline reference fuel. The highest regression rates were found for the Solid Wax (SW) composition, added with 5% MgH2 mass fraction; at 350 kg/(m2s) oxygen mass flux, the measured regression rate, averaged in space and time, was 2.5 mm/s, which is approximately five times higher than that of the pure HTPB composition. Compositions added with nanosized aluminum powders were compared with those added with MgH2, using gel or solid wax
A two-channel Molecular dosimeter for the optical detection of copper(II)
A cyclam-like macrocycle with an integrated push-pull
chromophore selectively detects Cu2+ inclusion through
both orange-to-yellow colour change and quenching of the
green fluorescence
Bimacrocyclic Effect in Anion Recognition by a Copper(II) Bicyclam Complex
The dicopper(II) complex of the bimacrocyclic ligand α,α′-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene, 2, interacts with selected anions in dimethyl sulfoxide solution according to two different modes: (i) halides (Cl-, Br-, and I-) and N3- coordinate the two metal centers at the same time between the two macrocyclic subunits that face each other and (ii) anionic species that do not fit the bridging coordination mode (e.g., NCO-, SCN-, CH3COO-, NO3-, and H2PO4-) interact with copper(II) ions only at the "external" positions or their interaction is too weak to be detected. Occurrence of the bridging interaction is demonstrated by X-ray crystallographic studies performed on the adduct formed by [Cu2(2)]4+ with azide and by electron paramagnetic resonance investigation, as the anion coordination between the two copper(II) centers induces spin-spin coupling. Isothermal titration calorimetry experiments performed on [Cu2(2)]4+ and, for comparison, on [(5,7-dimethyl-6-benzyl-1,4,8,11-tetraazacyclotetradecane)copper(II)], representing the mononuclear analogue, allowed determination of thermodynamic parameters (log K, ΔH, and TΔS) associated with the considered complex/anion equilibria. Thermodynamic data showed that adducts formed by [Cu2(2)]4+ with halides and azide benefit from an extra stability that can be explained on the basis of the anion advantage of simultaneously binding the two metal centers, i.e., in terms of the bimacrocyclic effect
NIGER-DELTA: ENVIRONMENT, OGONI CRISIS AND THE STATE
Among the well agreed-on benefits of a guideline computerisation, with respect to the traditional text format, there are the disambiguation, the possibility of looking at the guideline at different levels of detail and the possibility of generating patient-tailored suggestions. Nevertheless, the connection of guidelines with patient records is still a challenging problem, as well as their effective integration into the clinical workflow. In this paper, we describe the evolution of our environment for representing and running guidelines. The main new features concern the choice of a commercial product as the middle layer with the electronic patient record, the consequent possibility of gathering information from different legacy systems, and the extension of this "virtual medical record" to the storage of process data. This last feature allows managing exceptions, i.e. decisions that do not comply with guidelines
- …