4,840 research outputs found
The intruder feature of 31Mg and the coexistence of many particle and many hole states
The low-lying level structure of has been investigated by the
antisymmetrized molecular dynamics (AMD) plus generator coordinate method (GCM)
with the Gogny D1S force. It is shown that the N=20 magic number is broken and
the ground state has the pure neutron configuration. The coexistence of
many particle and many hole states at very low excitation energy is discussed
Complementarity and Scientific Rationality
Bohr's interpretation of quantum mechanics has been criticized as incoherent
and opportunistic, and based on doubtful philosophical premises. If so Bohr's
influence, in the pre-war period of 1927-1939, is the harder to explain, and
the acceptance of his approach to quantum mechanics over de Broglie's had no
reasonable foundation. But Bohr's interpretation changed little from the time
of its first appearance, and stood independent of any philosophical
presuppositions. The principle of complementarity is itself best read as a
conjecture of unusually wide scope, on the nature and future course of
explanations in the sciences (and not only the physical sciences). If it must
be judged a failure today, it is not because of any internal inconsistency.Comment: 29 page
Color symmetrical superconductivity in a schematic nuclear quark model
In this note, a novel BCS-type formalism is constructed in the framework of a
schematic QCD inspired quark model, having in mind the description of color
symmetrical superconducting states. The physical properties of the BCS vacuum
(average numbers of quarks of different colors) remain unchanged under an
arbitrary color rotation. In the usual approach to color superconductivity, the
pairing correlations affect only the quasi-particle states of two colors, the
single particle states of the third color remaining unaffected by the pairing
correlations. In the theory of color symmetrical superconductivity here
proposed, the pairing correlations affect symmetrically the quasi-particle
states of the three colors and vanishing net color-charge is automatically
insured. It is found that the groundstate energy of the color symmetrical
sector of the Bonn model is well approximated by the average energy of the
color symmetrical superconducting state proposed here
Electromagnetic Transition Strengths in Heavy Nuclei
We calculate reduced B(E2) and B(M1) electromagnetic transition strengths
within and between K-bands in support of a recently proposed model for the
structure of heavy nuclei. Previously, only spectra and a rough indication of
the largest B(E2) strengths were reported. The present more detailed
calculations should aid the experimental identification of the predicted ,
and bands and, in particular, act to confirm or refute the
suggestion that the model and bands correspond to the well known
and widespread beta and gamma bands. Furthermore they pinpoint transitions
which can indicate the presence of a so far elusive band by feeding
relatively strongly into or out of it. Some of these transitions may already
have been measured in Th, Th and U.Comment: 10 pages, 1 Figure, submitted to Physical Review
On the measurement of B(E2, 0+ -> 2+) using intermediate-energy Coulomb excitation
Coulomb excitation is a standard method used to extract quadrupole excitation
strengths of even-even nuclei. In typical analyses the reaction is assumed to
be one-step, Coulomb only, and is treated within a semi-classical model. In
this work, fully-quantal coupled-channel calculations are performed for three
test cases in order to determine the importance of multi-step effects, nuclear
contributions, feeding from other states and corrections to the semi-classical
approximation. We study the excitation of 30S, 58Ni and 78Kr on 197Au at ~ 50
AMeV. We find that nuclear effects may contribute more than 10% and that
feeding contributions can be larger than 15%. These corrections do not alter
significantly the published B(E2) values, however an additional theoretical
error of up to 13% should be added to the experimental uncertainty if the
semi-classical model is used. This theoretical error is reduced to less than 7%
when performing a quantal coupled-channel analysis.Comment: 9 pages, accepted for publication in J. Phys. G: Nucl. Phy
Transient effects on electron spin observation
In an earlier publication we addressed the problem of splitting an electron beam in the Stern-Gerlach experiment. In contrast to arguments put forward in the early days of quantum theory, we concluded that there are no issues of principle preventing the observation of electron spin during free flight. In that paper, however, we considered only a sudden switch off of the separating magnetic field. In this work we consider the possible effects of finite switching times at the beginning and the end of the interaction period. We consider a model where the coupling between the electron and the field is time dependent. As a result of the time dependence, the field also acquires an electric component, but this seems to cause no significant change of our conclusions. On the other hand, the smooth change of the interaction enforces the same longitudinal velocity on the electron both at the beginning and end of the interaction period because of conservation laws; this effect was missing in our earlier calculations. As the electrons are supposed to travel as a beam, this feature helps by restoring the beam quality after the interaction
Relationship between X(5)-models and the interacting boson model
The connections between the X(5)-models (the original X(5) using an infinite
square well, X(5)-, X(5)-, X(5)-, and
X(5)-), based on particular solutions of the geometrical Bohr
Hamiltonian with harmonic potential in the degree of freedom, and the
interacting boson model (IBM) are explored. This work is the natural extension
of the work presented in [1] for the E(5)-models. For that purpose, a quite
general one- and two-body IBM Hamiltonian is used and a numerical fit to the
different X(5)-models energies is performed, later on the obtained wave
functions are used to calculate B(E2) transition rates. It is shown that within
the IBM one can reproduce well the results for energies and B(E2) transition
rates obtained with all these X(5)-models, although the agreement is not so
impressive as for the E(5)-models. From the fitted IBM parameters the
corresponding energy surface can be extracted and it is obtained that,
surprisingly, only the X(5) case corresponds in the moderate large N limit to
an energy surface very close to the one expected for a critical point, while
the rest of models seat a little farther.Comment: Accepted in Physical Review
On the relation between models and the interacting boson model
The connections between the models (the original E(5) using an
infinite square well, , and ), based
on particular solutions of the geometrical Bohr Hamiltonian with
-unstable potentials, and the interacting boson model (IBM) are
explored. For that purpose, the general IBM Hamiltonian for the
transition line is used and a numerical fit to the different models
energies is performed, later on the obtained wavefunctions are used to
calculate B(E2) transition rates. It is shown that within the IBM one can
reproduce very well all these models. The agreement is the best for
and reduces when passing through ,
and E(5), where the worst agreement is obtained (although still very good for a
restricted set of lowest lying states). The fitted IBM Hamiltonians correspond
to energy surfaces close to those expected for the critical point. A phenomenon
similar to the quasidynamical symmetry is observed
Nuclear phenomena derived from quark-gluon strings
We propose a QCD based many-body model for the nucleus where the strong
coupling regime is controlled by a three body string force and the weak
coupling regime is dominated by a pairing force. This model operates
effectively with a quark-gluon Lagrangian containing a pairing force from
instantons and a baryonic string term which contains a confining potential. The
unified model for weak and strong coupling regimes, is, however, only
consistent at the border of perturbative QCD. The baryonic string force is
necessary, as a {stability and} compressibility analysis shows, for the
occurrence of the phases of nuclear matter. The model exhibits a quark
deconfinement transition and chiral restoration which are suggested by QCD and
give qualitatively correct numerics. The effective model is shown to be
isomorphic to the Nambu-Jona-Lasinio model and exhibits the correct chirality
provided that the chiral fields are identified with the 2-particle strings,
which are natural in a QCD frameworkComment: 17 pages, 4 figures, 2 table
Quadrupole collective variables in the natural Cartan-Weyl basis
The matrix elements of the quadrupole collective variables, emerging from
collective nuclear models, are calculated in the natural Cartan-Weyl basis of
O(5) which is a subgroup of a covering structure. Making
use of an intermediate set method, explicit expressions of the matrix elements
are obtained in a pure algebraic way, fixing the -rotational structure
of collective quadrupole models.Comment: submitted to Journal of Physics
- âŠ