326 research outputs found

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres

    Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator

    Full text link
    We study the superconducting state of the hole-doped two-dimensional Hubbard model using Cellular Dynamical Mean Field Theory, with the Lanczos method as impurity solver. In the under-doped regime, we find a natural decomposition of the one-particle (photoemission) energy-gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure

    Theory for Superconducting Properties of the Cuprates: Doping Dependence of the Electronic Excitations and Shadow States

    Full text link
    The superconducting phase of the 2D one-band Hubbard model is studied within the FLEX approximation and by using an Eliashberg theory. We investigate the doping dependence of TcT_c, of the gap function Δ(k,ω)\Delta ({\bf k},\omega) and of the effective pairing interaction. Thus we find that TcT_c becomes maximal for 13  %13 \; \% doping. In {\it overdoped} systems TcT_c decreases due to the weakening of the antiferromagnetic correlations, while in the {\it underdoped} systems due to the decreasing quasi particle lifetimes. Furthermore, we find {\it shadow states} below TcT_c which affect the electronic excitation spectrum and lead to fine structure in photoemission experiments.Comment: 10 pages (REVTeX) with 5 figures (Postscript

    Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions

    Full text link
    We consider the tunnel spin current between two ferromagnetic metals from a perspective similar to the one used in superconductor/superconductor tunnel junctions. We use fundamental arguments to derive a Josephson-like spin tunnel current IJspinsin(θ1θ2)I_J^{\rm spin}\propto\sin(\theta_1-\theta_2). Here the phases are associated with the planar contribution to the magnetization, eiθ\sim e^{i\theta}. The crucial step in our analysis is the fact that the zz-component of the spin is canonically conjugate to the phase of the planar contribution: [θ,Sz]=i[\theta,S^z]=i. This is analogous to the commutation relation [ϕ,N]=i[\phi,N]=i in superconductors, where ϕ\phi is the phase associated to the superconducting order parameter and NN is the Cooper pair number operator. We briefly discuss the experimental consequences of our theoretical analysis.Comment: LaTex, seven pages, no figures; version to appear in Europhys. Lett.; in order to make room for a more extended microscopic analysis, the phenomenological discussion contained in v2 was remove

    A new approach for perovskites in large dimensions

    Full text link
    Using the Hubbard Hamiltonian for transition metal-3d and oxygen-2p states with perovskite geometry, we propose a new scaling procedure for a nontrivial extension of these systems to large spatial dimensions DD. The scaling procedure is based on a selective treatment of different hopping processes for large DD and can not be generated by a unique scaling of the hopping element. The model is solved in the limit DD \rightarrow \infty by the iterated perturbation theory and using an extended non-crossing approximation. We discuss the evolution of quasi particles at the Fermi-level upon doping, leading to interesting insight into the dynamical character of the charge carriers near the metal insulator instability of transition metal oxide systems, three dimensional perovskites and other strongly correlated transition metal oxides.Comment: 5 pages (TeX) with 2 figures (Postscript

    Theory for the Doping Dependence of Spin Fluctuation Induced Shadow States in High-Tc_{c} Superconductors

    Full text link
    We analyze the doping dependence of the intensity and energetical position of shadow states in high -Tc_{c} superconductors within the 2D Hubbard model and using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. It is shown that shadow states resulting from short range antiferromagnetic correlations occur for small but finite excitation energies which decrease for decreasing doping, reflecting a dynamically broken symmetry with increasing lifetime. Simultanously, the intensity of these new states increases, the quasiparticle dispersion is strongly flattened, and a pseudogap in the density of states occurs. Finally, we discuss the importance of flat bands at the Fermi level and nesting of the Fermi surface as general prerequisites for the observability of shadow states.Comment: 9 pages (TeX) with 3 figures (Postscript

    Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets

    Full text link
    The spin-lattice relaxation time τSL\tau_{SL} is a key quantity both for the dynamical response of ferromagnets excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths we calculate τSL\tau_{SL} for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized photoemission experiments. We argue that the time scale for τSL\tau_{SL} in metals is essentially given by the spin-orbit induced magnetocrystalline anisotropy energy.Comment: 18 pages revtex, 5 uuencoded figure

    Theory for the Interdependence of High-Tc_c Superconductivity and Dynamical Spin Fluctuations

    Full text link
    The doping dependence of the superconducting state for the 2D one-band Hubbard Hamiltonian is determined. By using an Eliashberg-type theory, we find that the gap function Δk\Delta_{\bf k} has a dx2y2d_{x^2-y^2} symmetry in momentum space and Tc_c becomes maximal for 13  %13 \; \% doping. Since we determine the dynamical excitations directly from real frequency axis calculations, we obtain new structures in the angular resolved density of states related to the occurrence of {\it shadow states} below Tc_c. Explaining the anomalous behavior of photoemission and tunneling experiments in the cuprates, we find a strong interplay between dd-wave superconductivity and dynamical spin fluctuations.Comment: 4 pages (REVTeX) with 4 figures (Postscript
    corecore