286 research outputs found

    Uncovering the Neural Signature of Lapsing Attention: Electrophysiological Signals Predict Errors up to 20 s before They Occur

    Get PDF
    The extent to which changes in brain activity can foreshadow human error is uncertain yet has important theoretical and practical implications. The present study examined the temporal dynamics of electrocortical signals preceding a lapse of sustained attention. Twenty-one participants performed a continuous temporal expectancy task, which involved continuously monitoring a stream of regularly alternating patterned stimuli to detect a rarely occurring target stimulus whose duration was 40% longer. The stimulus stream flickered at a rate of 25 Hz to elicit a steady-state visual-evoked potential (SSVEP), which served as a continuous measure of basic visual processing. Increasing activity in the band (8 –14 Hz) was found beginning20 s before a missed target. This was followed by decreases in the amplitude of two event-related components over a short pretarget time frame: the frontal P3 (3– 4 s) and contingent-negative variation (during the target interval). In contrast, SSVEP amplitude before hits and misses was closely matched, suggesting that the efficacy of ongoing basic visual processing was unaffected. Our results show that the specific neural signatures of attentional lapses are registered in the EEG up to 20 s before an error

    Executive "brake failure" following deactivation of human frontal lobe

    Get PDF
    In the course of daily living, humans frequently encounter situations in which a motor activity, once initiated, becomes unnecessary or inappropriate. Under such circumstances, the ability to inhibit motor responses can be of vital importance. Although the nature of response inhibition has been studied in psychology for several decades, its neural basis remains unclear. Using transcranial magnetic stimulation, we found that temporary deactivation of the pars opercularis in the right inferior frontal gyrus selectively impairs the ability to stop an initiated action. Critically, deactivation of the same region did not affect the ability to execute responses, nor did it influence physiological arousal. These findings confirm and extend recent reports that the inferior frontal gyrus is vital for mediating response inhibition

    Applications of unmanned aerial vehicles in intertidal reef monitoring

    Full text link
    Monitoring of intertidal reefs is traditionally undertaken by on-ground survey methods which have assisted in understanding these complex habitats; however, often only a small spatial footprint of the reef is observed. Recent developments in unmanned aerial vehicles (UAVs) provide new opportunities for monitoring broad scale coastal ecosystems through the ability to capture centimetre resolution imagery and topographic data not possible with conventional approaches. This study compares UAV remote sensing of intertidal reefs to traditional on-ground monitoring surveys, and investigates the role of UAV derived geomorphological variables in explaining observed intertidal algal and invertebrate assemblages. A multirotor UAV was used to capture <1 cm resolution data from intertidal reefs, with on-ground quadrat surveys of intertidal biotic data for comparison. UAV surveys provided reliable estimates of dominant canopy-forming algae, however, understorey species were obscured and often underestimated. UAV derived geomorphic variables showed elevation and distance to seaward reef edge explained 19.7% and 15.9% of the variation in algal and invertebrate assemblage structure respectively. The findings of this study demonstrate benefits of low-cost UAVs for intertidal monitoring through rapid data collection, full coverage census, identification of dominant canopy habitat and generation of geomorphic derivatives for explaining biological variation

    CDC Botswana : sharing another partnership success

    Get PDF
    CDC Botswana, in partnership with the Ministry of Health since 1995--for a safer, healthier Botswana.Publication date from document properties.CDCBotswanaSharesSuccess_19_07_12.pd

    Evidence accumulation rate moderates the relationship between enriched environment exposure and age-related response speed declines

    Get PDF
    Older adults exposed to enriched environments (EEs) maintain relatively higher levels of cognitive function, even in the face of compromised markers of brain health. Response speed (RS) is often used as a simple proxy to measure the preservation of global cognitive function in older adults. However, it is unknown which specific selection, decision, and/or motor processes provide the most specific indices of neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found that the efficiency with which an individual accumulates sensory evidence was a critical determinant of the extent to which RS was preserved in older adults (63% female, 37% male). Moreover, the mitigating influence of EE on age-related RS declines was most pronounced when evidence accumulation rates were shallowest. These results suggest that the phenomenon of cognitive reserve, whereby high EE individuals can better tolerate suboptimal brain health to facilitate the preservation of cognitive function, is not just applicable to neuroanatomical indicators of brain aging but can be observed in markers of neurophysiology. Our results suggest that EEG metrics of evidence accumulation may index neurocognitive vulnerability of the aging brain. Significance Statement Response speed in older adults is closely linked with trajectories of cognitive aging. Here, by recording brain activity while individuals perform a simple computer task, we identify a neural metric that is a critical determinant of response speed. Older adults exposed to greater cognitive and social stimulation throughout a lifetime could maintain faster responding, even when this neural metric was impaired. This work suggests EEG is a useful technique for interrogating how a lifetime of stimulation benefits brain health in aging

    Dopaminergic Polymorphisms Associated with Time-on-Task Declines and Fatigue in the Psychomotor Vigilance Test

    Get PDF
    Prolonged demands on the attention system can cause a decay in performance over time known as the time-on-task effect. The inter-subject differences in the rate of this decline are large, and recent efforts have been made to understand the biological bases of these individual differences. In this study, we investigate the genetic correlates of the time-on-task effect, as well as its accompanying changes in subjective fatigue and mood. N = 332 subjects performed a 20-minute test of sustained attention (the Psychomotor Vigilance Test) and rated their subjective states before and after the test. We observed substantial time-on-task effects on average, and large inter-individual differences in the rate of these declines. The 10-repeat allele of the variable number of tandem repeats marker (VNTR) in the dopamine transporter gene and the Met allele of the catechol-o-methyl transferase (COMT) Val158Met polymorphism were associated with greater vulnerability to time-on-task. Separately, the exon III DRD4 48 bp VNTR of the dopamine receptor gene DRD4 was associated with subjective decreases in energy. No polymorphisms were associated with task-induced changes in mood. We posit that the dopamine transporter and COMT genes exert their effects by increasing dopaminergic tone, which may induce long-term changes in the prefrontal cortex, an important mediator of sustained attention. Thus, these alleles may affect performance particularly when sustained dopamine release is necessary

    Relationship between atomoxetine plasma concentration, treatment response and tolerability in attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder

    Get PDF
    The purpose of this study was to examine whether atomoxetine plasma concentration predicts attention-deficit/hyperactivity disorder (ADHD) or oppositional defiant disorder (ODD) response. This post-hoc analysis assessed the relationship between atomoxetine plasma concentration and ADHD and ODD symptoms in patients (with ADHD and comorbid ODD) aged 6–12 years. Patients were randomly assigned to atomoxetine 1.2 mg/kg/day (n = 156) or placebo (n = 70) for 8 weeks (Study Period II). At the end of 8 weeks, ODD non-remitters (score >9 on the SNAP-IV ODD subscale and CGI-I > 2) with atomoxetine plasma concentration <800 ng/ml at 2 weeks were re-randomized to either atomoxetine 1.2 mg/kg/day or 2.4 mg/kg/day for an additional 4 weeks (Study Period III). ODD remitters and non-remitters with plasma atomoxetine ≥800 ng/ml remained on 1.2 mg/kg/day atomoxetine for 4 weeks. Patients who received atomoxetine, completed Study Period II, and entered Study Period III were included in these analyses. All the groups demonstrated improvement on the SNAP-IV ODD and ADHD-combined subscales (P < .001). At the end of Study Periods II and III, ODD and ADHD improvement was significantly greater in the remitter group compared with the non-remitter groups. Symptom improvement was numerically greater in the non-remitter (2.4 mg/kg/day compared with the non-remitter 1.2 mg/kg/day) group. Atomoxetine plasma concentration was not indicative of ODD and ADHD improvement after 12 weeks of treatment. ADHD and ODD symptoms improved in all the groups with longer duration on atomoxetine. Results suggest atomoxetine plasma concentration does not predict ODD and ADHD symptom improvement. However, a higher atomoxetine dose may benefit some patients

    The Effects of Methylphenidate on the Neural Signatures of Sustained Attention

    Get PDF
    BACKGROUND: Although it is well established that methylphenidate (MPH) enhances sustained attention, the neural mechanisms underpinning this improvement remain unclear. We examined how MPH influenced known electro-physiological precursors of lapsing attention over different time scales

    A national harmonised data collection network for neurodevelopmental disorders: A transdiagnostic assessment protocol for neurodevelopment, mental health, functioning and well-being

    Get PDF
    BACKGROUND: Children with neurodevelopmental disorders share common phenotypes, support needs and comorbidities. Such overlap suggests the value of transdiagnostic assessment pathways that contribute to knowledge about research and clinical needs of these children and their families. Despite this, large transdiagnostic data collection networks for neurodevelopmental disorders are not well developed. This paper describes the development of a nationally supported transdiagnostic clinical and research assessment protocol across Australia. The vision is to establish a harmonised network for data collection and collaboration that promotes transdiagnostic clinical practice and research. METHODS: Clinicians, researchers and community groups across Australia were consulted using surveys and national summits to identify assessment instruments and unmet needs. A national research committee was formed and, using a consensus approach, selected assessment instruments according to pre-determined criteria to form a harmonised transdiagnostic assessment protocol. RESULTS: Identified assessment instruments were clustered into domains of transdiagnostic assessment needs, which included child functioning/quality of life, child mental health, caregiver mental health, and family background information. From this, the research committee identified a core set of nine measures and an extended set of 14 measures that capture these domains with potential for further modifications as recommended by clinicians, researchers and community members. CONCLUSION: The protocol proposed here was established through a strong partnership between clinicians, researchers and the community. It will enable (i) consensus driven transdiagnostic clinical assessments for children with neurodevelopmental disorders, and (ii) research studies that will inform large transdiagnostic datasets across neurodevelopmental disorders and that can be used to inform research and policy beyond narrow diagnostic groups. The long-term vision is to use this framework to facilitate collaboration across clinics to enable large-scale data collection and research. Ultimately, the transdiagnostic assessment data can be used to inform practice and improve the lives of children with neurodevelopmental disorders and their families

    Effects of Multimodal Load on Spatial Monitoring as Revealed by ERPs

    Get PDF
    While the role of selective attention in filtering out irrelevant information has been extensively studied, its characteristics and neural underpinnings when multiple environmental stimuli have to be processed in parallel are much less known. Building upon a dual-task paradigm that induced spatial awareness deficits for contralesional hemispace in right hemisphere-damaged patients, we investigated the electrophysiological correlates of multimodal load during spatial monitoring in healthy participants. The position of appearance of briefly presented, lateralized targets had to be reported either in isolation (single task) or together with a concurrent task, visual or auditory, which recruited additional attentional resources (dual-task). This top-down manipulation of attentional load, without any change of the sensory stimulation, modulated the amplitude of the first positive ERP response (P1) and shifted its neural generators, with a suppression of the signal in the early visual areas during both visual and auditory dual tasks. Furthermore, later N2 contralateral components elicited by left targets were particularly influenced by the concurrent visual task and were related to increased activation of the supramarginal gyrus. These results suggest that the right hemisphere is particularly affected by load manipulations, and confirm its crucial role in subtending automatic orienting of spatial attention and in monitoring both hemispaces
    corecore