24 research outputs found
Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries
The influence of a small relative density difference on the displacement of
two miscible liquids is studied experimentally in transparent 2D networks of
micro channels. Both stable displacements in which the denser fluid enters at
the bottom of the cell and displaces the lighter one and unstable displacements
in which the lighter fluid is injected at the bottom and displaces the denser
one are realized. Except at the lowest mean flow velocity U, the average
of the relative concentration satisfies a convection-dispersion
equation. The dispersion coefficient is studied as function of the relative
magnitude of fluid velocity and of the velocity of buoyancy driven fluid
motion. A model is suggested and its applicability to previous results obtained
in 3D media is discussed
Mobility, turnover and storage of pollutants in soils, sediments and waters : achievements and results of the EU project AquaTerra : a review.
AquaTerra is one of the first environmental projects within the 6th Framework program by the European Commission. It began in June 2004 with a multidisciplinary team of 45 partner organizations from 13 EU countries, Switzerland, Serbia, Romania and Montenegro. Results from sampling and modeling in 4 large river basins (Ebro, Danube, Elbe and Meuse) and one catchment of the Brévilles Spring in France led to new evaluations of diffuse and hotspot input of persistent organic and metal pollutants including dynamics of pesticides and polycyclic aromatic hydrocarbons, as well as metal turnover and accumulation. While degradation of selected organic compounds could be demonstrated under controlled conditions in the laboratory, turnover of most persistent pollutants in the field seems to range from decades to centuries. First investigations of long-term cumulative and degradation effects, particularly in the context of climate change, have shown that it is also necessary to consider the predictions of more than one climate model when trying to assess future impacts. This is largely controlled by uncertainties in climate model responses. It is becoming evident, however, that changes to the climate will have important impacts on the diffusion and degradation of pollutants in space and time that are just at the start of their exploration