115 research outputs found
Induced polarization and electronic properties of carbon doped boron-nitride nanoribbons
The electronic properties of boron-nitride nanoribbons (BNNRs) doped with a
line of carbon atoms are investigated by using density functional calculations.
Three different configurations are possible: the carbon atoms may replace a
line of boron or nitrogen atoms or a line of alternating B and N atoms which
results in very different electronic properties. We found that: i) the NCB
arrangement is strongly polarized with a large dipole moment having an
unexpected direction, ii) the BCB and NCN arrangement are non-polar with zero
dipole moment, iii) the doping by a carbon line reduces the band gap
independent of the local arrangement of boron and nitrogen around the carbon
line, iv) an electric field parallel to the carbon line polarizes the BN sheet
and is found to be sensitive to the presence of carbon dopants, and v) the
energy gap between the highest occupied molecular orbital and the lowest
unoccupied molecular orbital decreases linearly with increasing applied
electric field directed parallel to the carbon line. We show that the
polarization and energy gap of carbon doped BNNRs can be tuned by an electric
field applied parallel along the carbon line.Comment: 11 pages, 6 figure
Spiral graphone and one sided fluorographene nano-ribbons
The instability of a free-standing one sided hydrogenated/fluorinated
graphene nano-ribbon, i.e. graphone/fluorographene, is studied using ab-initio,
semiempirical and large scale molecular dynamics simulations. Free standing
semi-infinite arm-chair like hydrogenated/fluorinated graphene (AC-GO/AC-GF)
and boat like hydrogenated/fluorinated graphene (B-GO/B-GF) (nano-ribbons which
are periodic along the zig-zag direction) are unstable and spontaneously
transform into spiral structures. We find that rolled, spiral B-GO and B-GF are
energetically more favorable than spiral AC-GO and AC-GF which is opposite to
the double sided flat hydrogenated/fluorinated graphene, i.e.
graphane/fluorographene. We found that the packed, spiral structures exhibit
unexpected localized HOMO-LUMO at the edges with increasing energy gap during
rolling. These rolled hydrocarbon structures are stable beyond room temperature
up to at least =1000\,K.Comment: Phys. Rev. B 87, 075448 (2013
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
Value of Emergent Neurovascular Imaging for Seat Belt Injury : A Multi-institutional Study
BACKGROUND AND PURPOSE: Screening for blunt cerebrovascular injury in patients after motor vehicle collision (MVC) solely based on the presence of cervical seat belt sign has been debated in the literature without consensus. Our aim was to assess the value of emergent neurovascular imaging in patients after an MVC who present with a seat belt sign through a large-scale multi-institutional study.
MATERIALS AND METHODS: The electronic medical records of patients admitted to the emergency department with CTA/MRAs performed with an indication of seat belt injury of the neck were retrospectively reviewed at 5 participating institutions. Logistic regression analysis was used to determine the association among age, sex, and additional trauma-related findings with blunt cerebrovascular injury.
RESULTS: Five hundred thirty-five adult and 32 pediatric patients from June 2003 until March 2020 were identified. CTA findings were positive in 12/567 (2.1%) patients for the presence of blunt cerebrovascular injury of the vertebral (
CONCLUSIONS: The risk of vascular injury in the presence of the cervical seat belt sign is small, and most patients diagnosed with blunt cerebrovascular injury have other associated findings. Therefore, CTA based solely on this sign has limited value (3/567â=â a 0.5% positivity rate). We suggest that in the absence of other clinical findings, the seat belt sign does not independently justify neck CTA in patients after trauma
Comprehensive genotypeâphenotype correlation in APâ4 deficiency syndrome; Adding data from a large cohort of Iranian patients
Mutations in adaptor protein complexâ4 (APâ4) genes have first been identified in 2009, causing a phenotype termed as APâ4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotypeâphenotype correlation of the APâ4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected diseaseâcausing variants in APâ4 complex subunits, using nextâgeneration sequencing. Furthermore, by comparing genotypeâphenotype findings of those affected individuals with previously reported patients, we further refine the genotypeâphenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the APâ4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders
Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability
Background The X chromosome has historically been one of the most thoroughly investigated chromosomes regarding intellectual disability (ID), whose etiology is attributed to many factors including copy number variations (CNVs). Duplications of the long arm of the X chromosome have been reported in patients with ID, short stature, facial anomalies, and in many cases hypoplastic genitalia and/or behavioral abnormalities. Methods Here, we report on a large Iranian family with Xâlinked ID caused by a duplication on the X chromosome identified by whole genome sequencing in combination with linkage analysis. Results Seven affected males in different branches of the family presented with ID, short stature, seizures, facial anomalies, behavioral abnormalities (aggressiveness, selfâinjury, anxiety, impaired social interactions, and shyness), speech impairment, and micropenis. The duplication of the region Xq13.2q13.3, which is ~1.8 Mb in size, includes seven proteinâcoding OMIM genes. Three of these genes, namely SLC16A2, RLIM, and NEXMIF, if impaired, can lead to syndromes presenting with ID. Of note, this duplicated region was located within a linkage interval with a LOD score >3. Conclusion Our report indicates that CNVs should be considered in multiâaffected families where no candidate gene defect has been identified in sequencing data analysis
Van der Waals pressure and its effect on trapped interlayer molecules
Van der Waals assembly of two-dimensional (2D) crystals continue attract
intense interest due to the prospect of designing novel materials with
on-demand properties. One of the unique features of this technology is the
possibility of trapping molecules or compounds between 2D crystals. The trapped
molecules are predicted to experience pressures as high as 1 GPa. Here we
report measurements of this interfacial pressure by capturing
pressure-sensitive molecules and studying their structural and conformational
changes. Pressures of 1.2 +/- 0.3 GPa are found using Raman spectrometry for
molecular layers of one nanometer in thickness. We further show that this
pressure can induce chemical reactions and several trapped salts or compounds
are found to react with water at room temperature, leading to 2D crystals of
the corresponding oxides. This pressure and its effect should be taken into
account in studies of van der Waals heterostructures and can also be exploited
to modify materials confined at the atomic interfaces
Iranome: A catalogue of genomic variations in the Iranian population
Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia)
Genotype-Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures
Genetic susceptibility to multiple sclerosis (MS) is associated with the human leukocyte antigen (HLA) DRB1*1501 allele. Here we show a clear association between DRB1*1501 carrier status and four domains of disease severity in an investigation of genotype-phenotype associations in 505 robust, clinically well characterized MS patients evaluated cross-sectionally: (i) a reduction in the N-acetyl-aspartate (NAA) concentration within normal appearing white matter (NAWM) via 1HMR spectroscopy (P = 0.025), (ii) an increase in the volume of white matter (WM) lesions utilizing conventional anatomical MRI techniques (1,127 mm3; P = 0.031), (iii) a reduction in normalized brain parenchymal volume (nBPV) (P = 0.023), and (iv) impairments in cognitive function as measured by the Paced Auditory Serial Addition Test (PASAT-3) performance (Mean Z Score: DRB1*1501+: 0.110 versus DRB1*1501-: 0.048; P = 0.004). In addition, DRB1*1501+ patients had significantly more women (74% versus 63%; P = 0.009) and a younger mean age at disease onset (32.4 years versus 34.3 years; P = 0.025). Our findings suggest that DRB1*1501 increases disease severity in MS by facilitating the development of more T2-foci, thereby increasing the potential for irreversible axonal compromise and subsequent neuronal degeneration, as suggested by the reduction of NAA concentrations in NAWM, ultimately leading to a decline in brain volume. These structural aberrations may explain the significant differences in cognitive performance observed between DRB1*1501 groups. The overall goal of a deep phenotypic approach to MS is to develop an array of meaningful biomarkers to monitor the course of the disease, predict future disease behaviour, determine when treatment is necessary, and perhaps to more effectively recommend an available therapeutic interventio
- âŠ