458 research outputs found

    An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The average age of onset of both sporadic and familial cases is 50-60. years of age. The presence of cytoplasmic inclusions of the RNA-binding protein TAR DNA-binding protein-43 (TDP-43) in the affected neurons is seen in 95% of the ALS cases, which results in TDP-43 nuclear clearance and loss of function. The Drosophila melanogaster ortholog of TDP-43 (TBPH) shares many characteristics with the human protein. Using a TDP-43 aggregation inducer previously developed in human cells, we created a transgenic fly that shows an adult locomotive defect. Phenotype onset correlates with a physiologically age-related drop of TDP-43/TBPH mRNA and protein levels, seen both in mice and flies. Artificial reduction of mRNA levels, in vivo, anticipates the locomotion defect to the larval stage. Our study links, for the first time, aggregation and the age-related, evolutionary conserved reduction of TDP-43/TBPH levels with the onset of an ALS-like locomotion defect in a Drosophila model. A similar process might trigger the human disease

    Physiological tissue-specific and age-related reduction of mouse TDP-43 levels is regulated by epigenetic modifications

    Get PDF
    The cellular level of TDP-43 (also known as TARDBP) is tightly regulated; increases or decreases in TDP-43 have deleterious effects in cells. The predominant mechanism responsible for the regulation of the level of TDP-43 is an autoregulatory negative feedback loop. In this study, we identified an in vivo cause-effect relationship between Tardbp gene promoter methylation and specific histone modification and the TDP-43 level in tissues of mice at two different ages. Furthermore, epigenetic control was observed in mouse and human cultured cell lines. In amyotrophic lateral sclerosis, the formation of TDP-43-containing brain inclusions removes functional protein from the system. This phenomenon is continuous but compensated by newly synthesized protein. The balance between sequestration and new synthesis might become critical with ageing, if accompanied by an epigenetic modification-regulated decrease in newly synthesized TDP-43. Sequestration by aggregates would then decrease the amount of functional TDP-43 to a level lower than those needed by the cell and thereby trigger the onset of symptoms

    Human NDE1 splicing and mammalian brain development.

    Get PDF
    Exploring genetic and molecular differences between humans and other close species may be the key to explain the uniqueness of our brain and the selective pressures under which it evolves. Recent discoveries unveiled the involvement of Nuclear distribution factor E-homolog 1 (NDE1) in human cerebral cortical neurogenesis and suggested a role in brain evolution; however the evolutionary changes involved have not been investigated. NDE1 has a different gene structure in human and mouse resulting in the production of diverse splicing isoforms. In particular, mouse uses the terminal exon 8 T, while Human uses terminal exon 9, which is absent in rodents. Through chimeric minigenes splicing assay we investigated the unique elements regulating NDE1 terminal exon choice. We found that selection of the terminal exon is regulated in a cell dependent manner and relies on gain/loss of splicing regulatory sequences across the exons. Our results show how evolutionary changes in cis as well as trans acting signals have played a fundamental role in determining NDE1 species specific splicing isoforms supporting the notion that alternative splicing plays a central role in human genome evolution, and possibly human cognitive predominance

    Aggregate formation prevents dTDP-43 neurotoxicity in the Drosophila melanogaster eye

    Get PDF
    TDP-43 inclusions are an important histopathological feature in various neurodegenerative disorders, including Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degeneration. However, the relation of these inclusions with the pathogenesis of the disease is still unclear. In fact, the inclusions could be toxic themselves, induce loss of function by sequestering TDP-43 or a combination of both. Previously, we have developed a cellular model of aggregation using the TDP-43 Q/N rich amino acid sequence 331-369 repeated 12 times (12xQ/N) and have shown that these cellular inclusions are capable of sequestering the endogenous TDP-43 both in non-neuronal and neuronal cells. We have tested this model in vivo in the Drosophila melanogaster eye. The eye structure develops normally in the absence of dTDP-43, a fact previously seen in knock out fly strains. We show here that expression of EGFP 12xQ/N does not alter the structure of the eye. In contrast, TBPH overexpression is neurotoxic and causes necrosis and loss of function of the eye. More important, the neurotoxicity of TBPH can be abolished by its incorporation to the insoluble aggregates induced by EGFP 12xQ/N. This data indicates that aggregation is not toxic per se and instead has a protective role, modulating the functional TBPH available in the tissue. This is an important indication for the possible pathological mechanism in action on ALS patients. © 2014

    Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene

    Get PDF
    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)(16) tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA

    Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo

    Get PDF
    Nuclear factor TDP-43 has been reported to play multiple roles in transcription, pre-mRNA splicing, mRNA stability and mRNA transport. From a structural point of view, TDP-43 is a member of the hnRNP protein family whose structure includes two RRM domains flanked by the N-terminus and C-terminal regions. Like many members of this family, the C-terminal region can interact with cellular factors and thus serve to modulate its function. Previously, we have described that TDP-43 binds to several members of the hnRNP A/B family through this region. In this work, we set up a coupled minigene/siRNA cellular system that allows us to obtain in vivo data to address the functional significance of TDP-43-recruited hnRNP complex formation. Using this method, we have finely mapped the interaction between TDP-43 and the hnRNP A2 protein to the region comprised between amino acid residues 321 and 366. Our results provide novel details of protein–protein interactions in splicing regulation. In addition, we provide further insight on TDP-43 functional properties, particularly the lack of effects, as seen with our assays, of the disease-associated mutations that fall within the TDP-43 321-366 region: Q331K, M337V and G348C

    CI-SpliceAI—Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites

    Get PDF
    Background It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential to improve prediction of splice disrupting variants. The recently published SpliceAI algorithm utilises deep neural networks and has been reported to have a greater accuracy than other commonly used methods. Methods and findings The original SpliceAI was trained on splice sites included in primary isoforms combined with novel junctions observed in GTEx data, which might introduce noise and de-correlate the machine learning input with its output. Limiting the data to only validated and manual annotated primary and alternatively spliced GENCODE sites in training may improve predictive abilities. All of these gene isoforms were collapsed (aggregated into one pseudo-isoform) and the SpliceAI architecture was retrained (CI-SpliceAI). Predictive performance on a newly curated dataset of 1,316 functionally validated variants from the literature was compared with the original SpliceAI, alongside MMSplice, MaxEntScan, and SQUIRLS. Both SpliceAI algorithms outperformed the other methods, with the original SpliceAI achieving an accuracy of ∼91%, and CI-SpliceAI showing an improvement at ∼92% overall. Predictive accuracy increased in the majority of curated variants. Conclusions We show that including only manually annotated alternatively spliced sites in training data improves prediction of clinically relevant variants, and highlight avenues for further performance improvements

    TDP-43 regulates drosophila neuromuscular junctions growth by modulating futsch/MAP1B levels and synaptic microtubules organization

    Get PDF
    TDP-43 is an evolutionarily conserved RNA binding protein recently associated with the pathogenesis of different neurological diseases. At the moment, neither its physiological role in vivo nor the mechanisms that may lead to neurodegeneration are well known. Previously, we have shown that TDP-43 mutant flies presented locomotive alterations and structural defects at the neuromuscular junctions. We have now investigated the functional mechanism leading to these phenotypes by screening several factors known to be important for synaptic growth or bouton formation. As a result we found that alterations in the organization of synaptic microtubules correlate with reduced protein levels in the microtubule associated protein futsch/MAP1B. Moreover, we observed that TDP-43 physically interacts with futsch mRNA and that its RNA binding capacity is required to prevent futsch down regulation and synaptic defects. © 2011 Godena et al
    corecore