2,552 research outputs found
Dzyaloshinski-Moriya interactions in the kagome lattice
The kagom\'e lattice exhibits peculiar magnetic properties due to its
strongly frustated cristallographic structure, based on corner sharing
triangles. For nearest neighbour antiferromagnetic Heisenberg interactions
there is no Neel ordering at zero temperature both for quantum and classical s
pins. We show that, due to the peculiar structure, antisymmetric
Dzyaloshinsky-Moriya interactions ()
are present in this latt ice. In order to derive microscopically this
interaction we consider a set of localized d-electronic states. For classical
spins systems, we then study the phase diagram (T, D/J) through mean field
approximation and Monte-Carlo simulations and show that the antisymmetric
interaction drives this system to ordered states as soon as this interaction is
non zero. This mechanism could be involved to explain the magnetic structure of
Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200
Nanoengineered Curie Temperature in Laterally-Patterned Ferromagnetic Semiconductor Heterostructures
We demonstrate the manipulation of the Curie temperature of buried layers of
the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the
effect of annealing. Patterning the GaAs-capped ferromagnetic layers into
nanowires exposes free surfaces at the sidewalls of the patterned (Ga,Mn)As
layers and thus allows the removal of Mn interstitials using annealing. This
leads to an enhanced Curie temperature and reduced resistivity compared to
unpatterned samples. For a fixed annealing time, the enhancement of the Curie
temperature is larger for narrower nanowires.Comment: Submitted to Applied Physics Letters (minor corrections
Flux through a hole from a shaken granular medium
We have measured the flux of grains from a hole in the bottom of a shaken
container of grains. We find that the peak velocity of the vibration, vmax,
controls the flux, i.e., the flux is nearly independent of the frequency and
acceleration amplitude for a given value of vmax. The flux decreases with
increasing peak velocity and then becomes almost constant for the largest
values of vmax. The data at low peak velocity can be quantitatively described
by a simple model, but the crossover to nearly constant flux at larger peak
velocity suggests a regime in which the granular density near the container
bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review
Geometrical Magnetic Frustration in Rare Earth Chalcogenide Spinels
We have characterized the magnetic and structural properties of the CdLn2Se4
(Ln = Dy, Ho), and CdLn2S4 (Ln = Ho, Er, Tm, Yb) spinels. We observe all
compounds to be normal spinels, possessing a geometrically frustrated
sublattice of lanthanide atoms with no observable structural disorder. Fits to
the high temperature magnetic susceptibilities indicate these materials to have
effective antiferromagnetic interactions, with Curie-Weiss temperatures theta ~
-10 K, except CdYb2S4 for which theta ~ -40 K. The absence of magnetic long
range order or glassiness above T = 1.8 K strongly suggests that these
materials are a new venue in which to study the effects of strong geometrical
frustration, potentially as rich in new physical phenomena as that of the
pyrochlore oxides.Comment: 17 pages, 5 figures, submitted to Phys Rev B; added acknowledgement
On the exponential transform of lemniscates
It is known that the exponential transform of a quadrature domain is a
rational function for which the denominator has a certain separable form. In
the present paper we show that the exponential transform of lemniscate domains
in general are not rational functions, of any form. Several examples are given
to illustrate the general picture. The main tool used is that of polynomial and
meromorphic resultants.Comment: 19 pages, to appear in the Julius Borcea Memorial Volume, (eds.
Petter Branden, Mikael Passare and Mihai Putinar), Trends in Mathematics,
Birkhauser Verla
Quantum spin liquids: a large-S route
This paper explores the large-S route to quantum disorder in the Heisenberg
antiferromagnet on the pyrochlore lattice and its homologues in lower
dimensions. It is shown that zero-point fluctuations of spins shape up a
valence-bond solid at low temperatures for one two-dimensional lattice and a
liquid with very short-range valence-bond correlations for another. A
one-dimensional model demonstrates potential significance of quantum
interference effects (as in Haldane's gap): the quantum melting of a
valence-bond order yields different valence-bond liquids for integer and
half-integer values of S.Comment: Proceedings of Highly Frustrated Magnetism 2003 (Grenoble), 6 LaTeX
page
Magnetoresistance Anomalies in (Ga,Mn)As Epilayers with Perpendicular Magnetic Anisotropy
We report the observation of anomalies in the longitudinal magnetoresistance
of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy.
Magnetoresistance measurements carried out in the planar geometry (magnetic
field parallel to the current density) reveal "spikes" that are antisymmetric
with respect to the direction of the magnetic field. These anomalies always
occur during magnetization reversal, as indicated by a simultaneous change in
sign of the anomalous Hall effect. The data suggest that the antisymmetric
anomalies originate in anomalous Hall effect contributions to the longitudinal
resistance when domain walls are located between the voltage probes. This
interpretation is reinforced by carrying out angular sweeps of ,
revealing an antisymmetric dependence on the helicity of the field sweep.Comment: Submitted to Phys. Rev.
- …