534 research outputs found

    Analysis of the Accuracy of Prediction of the Celestial Pole Motion

    Full text link
    VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession- nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models---namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p

    Иодирование хлорангидридов карбоновых кислот

    Get PDF

    Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece

    Full text link
    Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer) at 355-532-1064 nm, 2 aerosol extinction (aaer) profiles at 355-532 nm and the aerosol linear depolarization ratio (δ) at 532 nm] and microphysical properties [effective radius (reff), complex refractive index (m), single scattering albedo (ω)]. We present a case study of a long distance transport (~3.500-4.000 km) of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height). On 23 May, between 2-2.75 km we measured mean lidar ratios (LR) of 35 sr (355 nm) and 42 sr (532 nm), while the mean Ångström exponent (AE) aerosol backscatter-related values (355nm/532nm and 532nm/1064nm) were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode), reff=2.15 μm (coarse mode), m=1.36+0.00024i, ω=0.999 (355 nm, fine mode), ω=0.992(355 nm, coarse mode), ω=0.997 (532 nm, fine mode), and ω=0.980 (532 nm, coarse mode)

    v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    No full text
    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion

    Structural constraints for the Crh protein from solid-state NMR experiments

    Get PDF
    We demonstrate that short, medium and long-range constraints can be extracted from proton mediated, rare-spin detected correlation solid-state NMR experiments for the microcrystalline 10.4 × 2 kDa dimeric model protein Crh. Magnetization build-up curves from cross signals in NHHC and CHHC spectra deliver detailed information on side chain conformers and secondary structure for interactions between spin pairs. A large number of medium and long-range correlations can be observed in the spectra, and an analysis of the resolved signals reveals that the constraints cover the entire sequence, also including inter-monomer contacts between the two molecules forming the domain-swapped Crh dimer. Dynamic behavior is shown to have an impact on cross signals intensities, as indicated for mobile residues or regions by contacts predicted from the crystal structure, but absent in the spectra. Our work validates strategies involving proton distance measurements for large and complex proteins as the Crh dimer, and confirms the magnetization transfer properties previously described for small molecules in solid protein samples

    Investigation and Assessment of Resource Consumption of Process Chains

    Get PDF
    AbstractMany different technologies and processes have been established in production within the last decades. These technologies have to be integrated into sophisticated process chains to achieve today's requirements of high performance products. For most of these products the costs can be determined or at least estimated accurately. However, resource intensive and thus cost intensive processes and their potential within the process chains are often neither identified nor quantified. For identifying, measuring and subsequently assessing the need of resources, like energy or material and their monetary as well as environmental impact, four different process chains of high industrial relevance have been chosen and investigated with regards to their resource consumption. These process chains are used for manufacturing turbine blades made of Inconel and titanium aluminide as well as for comparisons of a conventional and an innovative process chain to manufacture an insert for an injection mold. By measuring and assessing their resource consumption the most resource intensive and thus influential processes have been identified and their potential for resource reduction has been evaluated. Due to the change of single processes to reduce resource consumption and thus the conditions for subsequent processes, the requirements might change and lead to adaptions within the entire process chain. For the assessment of the process chains and the changes within the processes themselves, a scenario based assessment has been modelled. This results in an economic and ecologic evaluation of these process chains and enables a comparison of these to choose the most meaningful process chain

    Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015

    Get PDF
    In this work, an evaluation of an intense biomass burning event observed over Ny-Ålesund (Spitsbergen, European Arctic) in July 2015 is presented. Data from the multi-wavelengths Raman-lidar KARL, a sun photometer and radiosonde measurements are used to derive some microphysical properties of the biomass burning aerosol as size distribution, refractive index and single scattering albedo at different relative humidities. Predominantly particles in the accumulation mode have been found with a bi-modal distribution and dominance of the smaller mode. Above 80% relative humidity, hygroscopic growth in terms of an increase of particle diameter and a slight decrease of the index of refraction (real and imaginary part) has been found. Values of the single scattering albedo around 0.9 both at 355 nm and 532 nm indicate some absorption by the aerosol. Values of the lidar ratio are around 26 sr for 355 nm and around 50 sr for 532 nm, almost independent of the relative humidity. Further, data from the photometer and surface radiation values from the local baseline surface radiation network (BSRN) have been applied to derive the radiative impact of the biomass burning event purely from observational data by comparison with a clear background day. We found a strong cooling for the visible radiation and a slight warming in the infra-red. The net aerosol forcing, derived by comparison with a clear background day purely from observational data, obtained a value of –95 W/m2 per unit AOD500
    corecore