7 research outputs found

    Effect of Casting Diameter and Heat Treatment Process on Microstructural Evolution and Mechanical Properties of Fe55-XCr18Mo7B16C4NbX(X=0,3) Ribbons and Nanostructured Rods

    No full text
    One-step and two-step annealing techniques were used to examine the relationship between microstructure and mechanical properties during compression tests in iron-based ribbons and nanostructured 1- and 2.5mm cylindrical rods. The X-ray diffraction, microstructural, and mechanical results showed that substituting Nb for Fe had a minor effect on glass-forming ability but increased the formability index. The novel two-step annealing process resulted in a remarkable formability index of 16.62 GPa, yield stress of 2830 MPa, ultimate strength of 3866 MPa, and 4.3% plastic strain. A ductile nanosized α-Fe framework and boron-containing nano precipitations, which caused Zener pinning effect, were responsible for these novel mechanical properties
    corecore