606 research outputs found

    Time to publication for NIHR HTA programme-funded research: a cohort study

    Get PDF
    ObjectiveTo assess the time to publication of primary research and evidence syntheses funded by the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) Programme published as a monograph in Health Technology Assessment and as a journal article in the wider biomedical literature.Study designRetrospective cohort study.SettingPrimary research and evidence synthesis projects funded by the HTA Programme were included in the cohort if they were registered in the NIHR research programmes database and was planned to submit the draft final report for publication in Health Technology Assessment on or before 9 December 2011.Main outcome measuresThe median time to publication and publication at 30?months in Health Technology Assessment and in an external journal were determined by searching the NIHR research programmes database and HTA Programme website.ResultsOf 458 included projects, 184 (40.2%) were primary research projects and 274 (59.8%) were evidence syntheses. A total of 155 primary research projects had a completion date; the median time to publication was 23?months (26.5 and 35.5?months to publish a monograph and to publish in an external journal, respectively) and 69% were published within 30?months. The median time to publication of HTA-funded trials (n=126) was 24?months and 67.5% were published within 30?months. Among the evidence syntheses with a protocol online date (n=223), the median time to publication was 25.5?months (28?months to publication as a monograph), but only 44.4% of evidence synthesis projects were published in an external journal. 65% of evidence synthesis studies had been published within 30.0?months.ConclusionsResearch funded by the HTA Programme publishes promptly. The importance of Health Technology Assessment was highlighted as the median time to publication was 9?months shorter for a monograph than an external journal article

    Alternative tissue fixation for combined histopathological and molecular analysis in a clinically representative setting

    Get PDF
    Formalin is the principal tissue fixative used worldwide for clinical and research purposes. Despite optimal preservation of morphology, its preservation of DNA and RNA is poor. As clinical diagnostics increasingly incorporates molecular-based analysis, the requirement for maintaining nucleic acid quality is of increasing importance. Here we assess an alternative non-formalin-based tissue fixation method, PAXgene Tissue system, with the aim of better preserving nucleic acids, while maintaining the quality of the tissue to be used for vital existing diagnostic techniques. In this study, these criteria are assessed in a clinically representative setting. In total, 203 paired PAXgene Tissue and formalin-fixed samples were obtained. Blind-scored haematoxylin and eosin (H&E) sections showed comparable and acceptable staining. Immunohistochemistry (IHC) staining was suboptimal using existing protocols but improved with minor method adjustment and optimisation. Quality of DNA and RNA was significantly improved by PAXgene tissue fixation [RIN 2.8 versus 3.8 (p < 0.01), DIN 5.68 versus 6.77 (p < 0.001)], which translated into improved performance on qPCR assay. These results demonstrate the potential of PAXgene Tissue to be used routinely in place of formalin, maintaining adequate histological staining and significantly improving the preservation of biological molecules in the genomic era

    Angioimmunoblastic T cell lymphoma : novel molecular insights by mutation profiling

    Get PDF
    Angioimmunoblastic T cell lymphoma (AITL) originates from follicular helper T-cells and is characterised by a polymorphic infiltrate with the neoplastic T-cells forming small clusters around the follicle and high endothelial venules. Despite the recent advances in its phenotypic characterisation, the genetics and molecular mechanisms underlying AITL are not fully understood. In the present study, we performed whole exome sequencing in 9 cases of AITL from Taiwan (n = 6) and U.K. (n = 3). We confirmed frequent mutations in TET2 (9/9), DNMT3A (3/9), IDH2 (3/9), RHOA (3/9) and PLCG1 (2/9) as recently reported by others. More importantly, we identified mutations in TNFRSF21 (1/9), CCND3 (1/9) and SAMSN1 (1/9), which are not yet seen or strongly implicated in the pathogenesis of AITL. Among the pathogenic mutations identified in AITL, mutations in DNA methylation regulators TET2 and DNMT3A occur early in hematopoietic stem cells as shown by previous studies, and these genetic events enhance the self-renewal of hematopoietic stem cells, but are unlikely to have any major impact on T-cell differentiation. Mutations in RHOA, PLCG1 and TNFRSF21 (DR6), which encode proteins critical for T-cell biology, most likely promote T-cell differentiation and malignant transformation, consequently generating the malignant phenotype. Our findings extend the molecular insights into the multistage development of AITL

    A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells

    No full text
    Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial

    Angioimmunoblastic T cell lymphoma: novel molecular insights by mutation profiling

    Get PDF
    Angioimmunoblastic T cell lymphoma (AITL) originates from follicular helper T-cells and is characterised by a polymorphic infiltrate with the neoplastic T-cells forming small clusters around the follicle and high endothelial venules. Despite the recent advances in its phenotypic characterisation, the genetics and molecular mechanisms underlying AITL are not fully understood. In the present study, we performed whole exome sequencing in 9 cases of AITL from Taiwan (n\textit{n} = 6) and U.K. (n\textit{n} = 3). We confirmed frequent mutations in TET2\textit{TET2} (9/9), DNMT3A\textit{DNMT3A} (3/9), IDH2\textit{IDH2} (3/9), RHOA\textit{RHOA} (3/9) and PLCG1\textit{PLCG1} (2/9) as recently reported by others. More importantly, we identified mutations in TNFRSF21\textit{TNFRSF21} (1/9), CCND3\textit{CCND3} (1/9) and SAMSN1\textit{SAMSN1} (1/9), which are not yet seen or strongly implicated in the pathogenesis of AITL. Among the pathogenic mutations identified in AITL, mutations in DNA methylation regulators TET2\textit{TET2} and DNMT3A\textit{DNMT3A} occur early in hematopoietic stem cells as shown by previous studies, and these genetic events enhance the self-renewal of hematopoietic stem cells, but are unlikely to have any major impact on T-cell differentiation. Mutations in RHOA\textit{RHOA}, PLCG1\textit{PLCG1} and TNFRSF21\textit{TNFRSF21} (DR6), which encode proteins critical for T-cell biology, most likely promote T-cell differentiation and malignant transformation, consequently generating the malignant phenotype. Our findings extend the molecular insights into the multistage development of AITL.The research was supported by grants from Kay Kendall Leukaemia Fund (KKL582), and Bloodwise, U.K. (13006). SZ was supported by a scholarship from the Master Hsingyun Cultural and Education Foundation. We thank Wenhan Deng for DNA preparation in some of the cases used in this study

    KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype.

    Get PDF
    To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.The research was supported by grants from Leukaemia & Lymphoma Research, U.K., Addenbrooke’s Charitable Trust. SM is a PhD student supported by MRC and Department of Pathology, University of Cambridge. LEI is a PhD student supported by the Pathological Society of UK & Ireland. NB is a fellow of the European Hematology Association and was supported by a starter grant from the Academy of Medical Sciences

    Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type Diffuse Large B Cell Lymphoma.

    Get PDF
    Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but falling short of providing a consistent relapse-specific genetic signature. In our study, we have focussed attention on the changes in gene expression profile accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo DLBCL patients. Cell of origin remained stable from diagnosis to relapse in 84% of patients, with only a single patient showing COO switching from ABC to GCB. Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes, that defined clinically distinct high and low risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with Ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Fluorescence in situ hybridisation analysis of chromosomal aberrations in gastric tissue: the potential involvement of Helicobacter pylori

    Get PDF
    In this series of experiments, a novel protocol was developed whereby gastric cells were collected using endoscopic cytology brush techniques, and prepared, such that interphase fluorescence in situ hybridization (FISH) could be performed. In total, 80 distinct histological samples from 37 patients were studied using four chromosome probes (over 32 000 cells analysed). Studies have previously identified abnormalities of these four chromosomes in upper GI tumours. Using premalignant tissues, we aimed to determine how early in Correa's pathway to gastric cancer these chromosome abnormalities occurred. Aneuploidy of chromosomes 4, 8, 20 and 17(p53) was detected in histologically normal gastric mucosa, as well as in gastritis, intestinal metaplasia, dysplasia and cancer samples. The levels of aneuploidy increased as disease severity increased. Amplification of chromosome 4 and chromosome 20, and deletion of chromosome 17(p53) were the more common findings. Hence, a role for these abnormalities may exist in the initiation of, and the progression to, gastric cancer. Helicobactor pylori infection was determined in premalignant tissue using histological analysis and PCR technology. Detection rates were comparable. PCR was used to subtype H. pylori for CagA status. The amplification of chromosome 4 in gastric tissue was significantly more prevalent in H. pylori-positive patients (n=7) compared to H. pylori-negative patients (n=11), possibly reflecting a role for chromosome 4 amplification in H. pylori-induced gastric cancer. The more virulent CagA strain of H. pylori was associated with increased disease pathology and chromosomal abnormalities, although numbers were small (CagA+ n=3, CagA− n=4). Finally, in vitro work demonstrated that the aneuploidy induced in a human cell line after exposure to the reactive oxygen species (ROS) hydrogen peroxide was similar to that already shown in the gastric cancer pathway, and may further strengthen the hypothesis that H. pylori causes gastric cancer progression via an ROS-mediated mechanism

    Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance.</p> <p>Methods</p> <p>We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population.</p> <p>Results</p> <p>Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available.</p> <p>Conclusion</p> <p>To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes.</p
    corecore